
Bűaapesr univers
of Economic Sciences
HUNGARY '
11-16 August 1996

Organized by the .
European Coordinating Committee for Artificial Inte

ohn von Ne

I T h /

o

Presenting Knowledge
ivith Logic Programming

Extensions

ECAI’96
B u d ap est, H ungary

K now ledge R ep resen ta tion
w ith Logic Program s

G erhard Brew ka
TU Wien,

Abteilung fiir wissensbasierte Systeme,
Treitlstr. 3, 1040 Wien, Austria

Jiirgen D ix
Universitat Koblenz-Landau,

Institut fiir Informatik,
Rheinau 1, 56075 Koblenz, Germany

June 10, 1996

Abstract

In this tutorial-overview we show how Knowledge Representation (KR)
can be done with the help of generalized logic programs. We start by
introducing the core of PROLOG, which is based on definite logic pro
grams. Although this class is very restricted (and will be enriched by
various additional features in the rest of the paper), it has a very nice
property for KR-tasks: there exist efficient Query-answering procedures
— a Top-Down approach and a Bottom-Up evaluation. In addition we
can not only handle ground queries but also queries with variables and
compute answer-substitutions.

It turns out that more advanced KR-tasks can not be properly handled
with definite programs. Therefore we extend this basic class of programs
by additional features like Negation-as-Finite-Failure, Default-Negation,
Explicit Negation, Preferences, and Disjunction. The need for these ex
tensions is motivated by suitable examples and the corresponding seman
tics axe discussed in detail.

Clearly, the more expressive the respective class of programs under
a certain semantics is, the less efficient are potential Query-answering
methods. This point will be illustrated and discussed for every extension.
By well-known recursion-theoretic results, it is obvious that there do not
exist complete Query-answering procedures for the general case where
variables and function symbols are allowed. Nevertheless we consider it an
important topic of further research to extract feasible classes of programs
where answer-substitutions can be computed.

CONTENTS

Contents

Introduction 5
1.1 Some History.. 6
1.2 Non-Monotonic Formalisms in K R .. 7
1.3 How this Paper is organized... 8

Definite Logic Programs 10
2.1 Top-Down.. 11
2.2 Bottom-Up... 13
2.3 Herbrand-Models and the underlying language......................... 14
2.4 Why going beyond Definite Programs?..................................... 16
2.5 What is a Semantics? .. 18

Adding Default-Negation 21
3.1 Negation-as-Finite-Failure... 21
3.2 Negation-as-Failure... 27
3.3 The Wellfounded Semantics: W F S .. 30
3.4 The Stable Semantics: STABLE .. 32
3.5 Complexity and Expressibility... 34

Adding Explicit N egation 38
4.1 Explicit vs. Classical and Strong Negation............................... 38
4.2 STABLE for Extended Logic Programs.................................... 39
4.3 WFS for Extended Logic Programs.. 42

Adding Preferences 47
5.1 Motivation ... 47
5.2 Handling Preferences.. 48
5.3 A Legal Reasoning Example.. 54

Adding Disjunction 56
6.1 GCWA... 56
6.2 D-WFS ... 58
6.3 DSTABLE.. 61
6.4 Other Semantics.. 62
6.5 Complexity and Expressibility... 63

W hat Do We Want and W hat Is Implem ented? 65
7.1 What is the Best Semantics? ... 65
7.2 Query-Answering Systems and Implementations........................ 69

LIST OF TABLES

A Appendix 73
A.l Predicate Logic.. 73
A.2 Complexity Theory.. 74
A.3 Default Logic.. 76
A.4 Circumscription.. 78

Bibliography 81

List of Figures

1 An Infinite SLD-Tree.. 12
2 The Floundering-Problem... 25
3 Semantics for Disjunctive Programs 66
4 Semantics for Normal Programs... 67
5 Two Models of a Theory with the Same Valuation..................... 79

List of Tables
1 Completeness for SLDNF... 27
2 Complexity of Non-Disjunctive Semantics............................... 35
3 Expressibility of Non-Disjunctive Semantics............................. 36
4 Complexity of Disjunctive Semantics....................................... 63
5 Expressibility of Disjunctive Semantics.................................... 64
6 Semantics and Their Equivalence-Transformations.................. 69

1 Introduction

One of the major reasons for the success story (if one is really willing to call
it a success story) of human beings on this planet is our ability to invent tools
that help us improve our — otherwise often quite limited — capabilities. The
invention of machines that are able to do interesting things, like transporting
people from one place to the other (even through the air), sending moving
pictures and sounds around the globe, bringing our email to the right person,
and the like, is one of the cornerstones of our culture and determines to a great
degree our everyday life.

Among the most challenging tools one can think of are machines that are
able to handle knowledge adequately. Wouldn’t it be great if, instead of the
stupid device which brings coffee from the kitchen to your office every day at
9.00, and which needs complete reengineering whenever your coffee preferences
change, you could (for the same price, admitted) get a smart robot whom you
can simply tell that you want your coffee black this morning, and that you need
an extra Aspirin since it was your colleague’s birthday yesterday? To react in the
right way to your needs such a robot would have to know a lot, for instance that
Aspirin should come with a glass of water, or that people in certain situations
need their coffee extra strong.

Building smart machines of this kind is at the heart of Artificial Intelligence
(AI). Since such machines will need tremendous amounts of knowledge to work
properly, even in very limited environments, the investigation of techniques for
representing knowledge and reasoning is highly important.

In the early days of AI it was still believed that modeling general purpose
problem solving capabilites, as in Newell and Simon’s famous GPS (General
Problem Solver) program, would be sufficient to generate intelligent behaviour.
This hypothesis, however, turned out to be overly optimistic. At the end of
the sixties people realized that an approach using available knowledge about
narrow domains was much more fruitful. This led to the expert systems boom
which produced many useful application systems, expert system building tools,
and expert system companies. Many of the systems are still in use and save
companies millions of dollars per year̂ .

Nevertheless, the simple knowledge representation and reasoning methods
underlying the early expert systems soon turned out to be insufficient. Most of
the systems were built based on simple rule languages, often enhanced with ad
hoc approaches to model uncertainty. It became apparent that more advanced
methods to handle incompleteness, defeasible reasoning, uncertainty, causality
and the like were needed.

This insight led to a tremendous increase of research on the foundations
of knowledge representation and reasoning. Theoretical research in this area

'We refer the interested reader to the recent book [RN95] which gives a very detailed and
nice exposition of what has been done in AI since its very beginning until today.

1 INTRODUCTION

has blossomed in recent years. Many advances have been made and important
results were obtained. The technical quality of this work is often impressive.

On the other hand, most of these advanced techniques have had surprisingly
little influence on practical applications so far. To a certain degree this is under
standable since theoretical foundations had to be laid first and pioneering work
was needed. However, if we do not want research in knowledge representation to
remain a theoreticians’ game more emphasis on computability and applicability
seems to be needed. We strongly believe that the kind of research presented in
this tutorial, that is research aiming at interesting combinations of ideas from
logic programming and nonmonotonic reasoning, provides an important step
into this direction.

1.1 Som e H istory

Historically, logic programs have been considered in the logic programming com
munity for more than 20 years. It began with [CKPR73, Kow74, vEK76] and
led to the definition and implementation of PROLOG, a by now theoretically
well-understood programming language (at least the declarative part consisting
of Horn-clauses: pure PROLOG). Extensions of PROLOG allowing negative
literals have been also considered in this area: they rely on the idea of negation-
as-finite-failure, we call them Logic-Programming-semantics (or shortly LP-
semantics).

In parallel, starting at about 1980, Nonmonotonic Reasoning entered into
computer science and began to constitute a new field of active research. It
was originally initiated because Knowledge Representation and Gommon-Sense
Reasoning using clcissical logic came to its limits. Formalisms like classical logic
are inherently monotonic and they seem to be too weak and therefore inadequate
for such reasoning problems.

In recent years, independently of the research in logic programming, people
interested in knowledge representation and nonmonotonic reasoning also tried
to define declarative semantics for programs containing default or explicit nega
tion and even disjunctions. They defined various semantics by appealing to
(different) intuitions they had about programs.

This second line of research started in 1986 with the Workshop on the
Foundations of Deductive Databases and logic programming organized by Jack
Minker: the revised papers of the proceedings were published in [Min88]. The
stratified (or the similar perfect) semantics presented there can be seen as
a splitting-point: it is still of interest for the logic programming community
(see [CL89]) but its underlying intuitions were inspired by nonmonotonic rea
soning and therefore much more suitable for knowledge representation tasks.
Semantics of this kind leave the philosophy underlying classical logic program
ming in that their primary aim is not to model negation-as-finite-failure, but to
construct new, more powerful semantics suitable for applications in knowledge
representation. Let us call such semantics NMR-semantics.

1.2 Non-Monotonic Formalisms in KR

Nowadays, due to the work of Apt, Blair and Walker, Fitting, Lifschitz,
Przymusinski and others, very close relationships between these two indepen
dent research lines became evident. Methods from logic programming, e.g. least
fixpoints of certain operators, can be used successfully to define NMR-semantics.

The NMR-semantics also shed new light on the understanding of the classical
nonmonotonic logics such as Default Logic, Autoepistemic Logic and the various
versions of Circumscription. In addition, the investigation of possible semantics
for logic programs seems to be useful because

1. parts of nonmonotonic systems (which are usually defined for full predi
cate logic, or even contain additional (modal)-operators) may be “imple
mented” with the help of such programs,

2. nonmonotonicity in these logics may be described with an appropriate
treatment of negation in logic programs.

1.2 N on -M on oton ic Form alism s in K R

As already mentioned above, research in nonmonotonic reasoning has begun at
the end of the seventies. One of the major motivations came from reasoning
about actions and events. John McCarthy and Patrick Hayes had proposed
their situation calculus as a means of representing changing environments in
logic. The basic idea is to use an extra situation argument for each fact which
describes the situation in which the fact holds. Situations, basically, are the
results of performing sequences of actions. It soon turned out that the problem
was not so much to represent what changes but to represent what does not
change when an event occurs. This is the so-called frame problem. The idea
was to handle the frame problem by using a default rule of the form

If a property P holds in situation S then P typically also holds in
the situation obtained by performing action A in S.

Given such a rule it is only necessary to explicitly describe the changes induced
by a particular action. All non-changes, for instance that the colour of the
kitchen wall does not change when the light is turned on, are handled implicitly.
Although it turned out that a straightforward formulation of this rule in some
of the most popular nonmonotonic formalisms may lead to unintended results
the frame problem was certainly the challenge motivating many people to join
the field.

In the meantime a large number of different nonmonotonic logics have been
proposed. We can distinguish four major types of such logics;

1. Logics using nonstandard inference rules with an additional consistency
check to represent default rules. Reiter’s default logic (see Appendix A.3)
and its variants are of this type.

1 INTRODUCTION

2. Nonmonotonic modal logics using a modal operator to represent consis
tency or (dis-) belief. These logics are nonmonotonic since conclusions
may depend on disbelief. The most prominent example is Moore’s au-
toepistemic logic.

3. Circumscription (see Appendix A.4) and its variants. These approaches
are based on a preference relation on models. A formula is a consequence
iff it is true in all most preferred models of the premises. Syntactically, a
second order formula is used to eliminate all non-preferred models.

4. Conditional approaches which use a non truth-functional connective l~
to represent defaults. A particularly interesting way of using such condi
tionals was proposed by Kraus, Lehmann and Magidor. They consider p
as a default consequence of q iff the conditional g K p is in the closure of
a given conditional knowledge base under a collection of rules. Each of
the rules directly corresponds to a desirable property of a nonmonotonic
inference relation.

The various logics are intended to handle different intuitions about nonmono
tonic reasoning in a most general way. On the other hand, the generality leads
to problems, at least from the point of view of implementations and applica
tions. In the first order case the approaches are not even semi-decidable since
an implicit consistency check is needed. In the propositional case we still have
tremendous complexity problems. For instance, the complexity of determin
ing whether a formula is contained in all extensions of a propositional default
theory is on the second level of the polynomial hierarchy. As mentioned ear
lier we believe that logic programming techniques can help to overcome these
difficulties.

Originally, nonmonotonic reasoning was intended to provide us with a fast
but unsound approximation of classical reasoning in the presence of incomplete
knowledge. Therefore one might ask whether the higher complexity of NMR-
formalisms (compared to classical logic) is not a real drawback of this aim? The
answer is that NMR-systems allow us to formulate a problem in a very compact
way as a theory T. It turns out that any equivalent formulation in classical logic
(if possible at all) as a theory T' is much larger: the size of T' is exponential
in the size of T! We refer to [GPSK95] and [CDS95a, CDS95b, CDLS95] where
such problems are investigated.

1.3 H ow th is P ap er is organized

In this tutorial paper we show how Knowledge Representation can be done with
the help of generalized logic programs. We start by introducing the core of
PROLOG, which is based on definite logic programs. Although this class is
very restricted (and will be enriched by various additional features in the rest of

1.3 How this Paper is organized

the paper), it haa a very nice property for KR-tasks: there exist efficient Query
answering procedures— a Top-Down approach and a Bottom-Up evaluation. In
addition we can not only handle ground queries but also queries with variables
and compute answer-substitutions.

It turns out that more advanced KR-tasks can not be properly handled with
definite programs. Therefore we extend this basic class of programs by addi
tional features like Negation-as-Finite-Failure, Default-Negation, Explicit Nega
tion, Preferences, and Disjunction. The need for these extensions is motivated
by suitable examples and the corresponding semantics are also discussed.

Clearly, the more expressive the respective class of programs under a certain
semantics is, the less efficient are potential Query-answering methods. This
point will be illustrated and discussed for every extension. By well-known
recursion-theoretic results, it is obvious that there do not exist complete Query
answering procedures for the general case where variables and function symbols
are allowed. Nevertheless we consider it an important topic of further research
to extract feasible classes of programs where answer-substitutions can be com
puted.

10 2 DEFINITE LOGIC PROGRAMS

2 Definite Logic Programs
In this section we consider the most restricted class of programs: definite logic
programs, programs without any negation at all. All the extensions of this basic
class we will introduce later contain at least some kind of negation (and perhaps
additional features). But here we also allow the ocurrence of free variables as
well as function symbols.

In Section 2.1 we introduce as a representative for the Top-Down approach
the SLD-Resolution. Section 2.2 presents the main competing approach of SLD:
Bottom-Up Evaluation. This approach is used in the Database community and
it is efficient when additional assumptions are made {finiteness-assumptions, no
function symbols). In Section 2.3 we consider the influence and appropriateness
of Herbrand models and their underlying intuition. Finally in Section 2.4 we
present and discuss two important examples in KR: Reasoning in Inheritance
Hierarchies and Reasoning about Actions. Both examples clearly motivate the
need of extending definite programs by a kind of default-negation “not ”.

First some notation used throughout this paper. A language £ consists of
a set of relation symbols and a set of function symbols (each symbol has an
associated arity). Nullary functions are called constants. Terms and atoms are
built from £ in the usual way starting with variables, applying function symbols
and relation-symbols.

Instead of considering arbitrary £-formulae, our main object of interest is a
program:

Definition 2.1 (Definite Logic Program)
A definite logic program consists of a finite number of rules of the form

A t— Ri,..., Bm,

where A ,B i,..., Bm are positive atoms (containing possibly free variables). We
call A the head of the rule and B \,..., Bm Us body.

We can think of a program as formalizing our knowledge about the world and
how the world behaves. Of course, we also want to derive new information,
i.e. we want to ask queries:

Definition 2.2 (Query)
Given a definite program we usually have a definite query in mind that we want
to be solved. A definite query Q is a conjunction of positive atoms Ci A ... ACi
which we denote by

?- C i , . . . , C i .

These Ci may also contain variables. Asking a query Q to a program P means
asking for all possible substitutions 0 of the variables in Q such that QQ follows
from P. Often, 0 is also called an answer to Q. Note that QQ may still contain
free variables.

2.1 Top-Down 11

Note that if a program P is given, we usually assume that it also determines
the underlying language £, denoted by £p, which is generated by exactly the
symbols ocurring in P. The set of all these atoms is called the Herbrand base
and denoted by Bcp or simply Bp. The corresponding set of all ground terms is
the Herbrand universe. Another important notion that we are not explaining in
detail here is that of Unification. Given two atoms A and B with free variables
we can ask if we can compute two substitutions 0 i , © 2 for the variables such
that

A0 1 is identical to B0 2 ,

or if we can decide that this is not possible at all. In fact, if the two atoms
are unifiable we can indeed compute a most general unifier, called mgU (see
[Llo87]). This will be important in our framework because if an atom appears
as a subgoal in a query, we may want to determine if there are rules in the
program whose heads unify with this atom.

How are our programs related to classical predicate logic? Of course, we
can map a program-rule into classical logic by interpreting as material
implication “D” and universally quantifying. This means we view such a rule
as the following universally quantified formula

Bi A. . . ABm D A.

However, as we will see later, there is a great difference: a logic program-rule
takes some orientation with it. This makes it possible to formulate the following
principle as an underlying intuition of all semantics of logic programs:

Principle 2.3 (Orientation)
If a ground atom A does not unify with some head of a program rule of P, then
this atom is considered to be false. In this case we say that 'hot A ” is derivable
from P to distinguish it from classical ->A.

2.1 T op-D ow n

SLD-Resolution ̂ is a special form of Robinson’s general Resolution rule. While
Robinson’s rule is complete for full first order logic, SLD is complete for definite
logic programs (see Theorem 2.5). We do not give a complete definition of
SLD-Resolution (see [Llo87]) but rather prefer to illustrate its behaviour on the
following example.

ŜL-resolution for Definite clauses.
Selection function.

SL-resolution stands for Linear resolution with

12 2 DEFINITE LOGIC PROGRAMS

*r-p{x,h)

[xlh]
“Success”

q{x,y),q{y,u),p{u,b) ^q{x,b)

q{x,y),q{y,u),q{u,v),p{v,b) qjx,y),q{y,b) □
[x/a]

3 “Success”

q{x,a)
“Failure”

Figure 1; An Infinite SLD-Tree

Example 2.4 (SLD-Resolution)
Let the program Psld consist of the following three clauses

(1) p{x,z) q{x,y),p{y,z)
(2) p(x,x)
(3) q{a,b)

The query Q we are interested in is given by p(x,b). I.e. we are looking for
all substitutions 0 for x such that p{x,b)Q follows from P.

Figure 1 illustrates the behaviour of SLD-resolution. We start with our
query in the form 4- Q. Sometimes the notation □ 4— Q is also used, where
□ denotes the falsum. In any round the selected atom is underlined: numbers
1, 2 or 3 indicate the number of the clause which the selected atom is resolved

2.2 Bottom-Up 13

against. Obviously, there are three different sorts of branches, namely

1. infinite branches,

2. branches that end up with the empty clause, and

3. branches that end in a deadlock (“Failure”): no applicable rule is left.

In this example we always resolve with the last atom in the goal under consid
eration. If we choose always the first atom in the goal, we will obtain, at least
in this example, a finite tree.

Definite programs have the nice feature that the intersection of all Herbrand-
models exists and is again a Herbrand model of P. It is denoted by Mp and
called the least Herbrand-model of P. Note that our original aim was to find
substitutions 0 such that QQ is derivable from the program P. This task as
well as Mp is closely related to SLD:

Theorem 2.5 (Soundness and Com pleteness o f SLD)
The following properties are equivalent:

• P 1= V QQ, i.e. V QQ is true in all models of P,

. Mp 1= V QQ,

• SLD computes an answer t that subsumes ̂ Q wrt Q.

Note that not any correct answer is computed, only the most general one is
(which of course subsumes all the correct ones).

The main feature of SLD-Resolution is its Goal-Orientedness. SLD auto
matically ensures (because it starts with the Query) that we consider only those
rules that are relevant for the query to be answered. Rules that are not at all
related are simply not considered in the course of the proof.

2.2 B o tto m -U p

We mentioned in the last section the least Herbrand model Mp. The bottom-
up approach can be described as computing this least Herbrand model from
below. We start first with rules with empty bodies (in our example these are
all instantiations of rules (2) and (3)). We get as facts all atoms that are in the
heads of rules with empty bodies (namely p{a,a),p{b, b), q{a, b) in Example 2.4).
In the next round we use the facts that we computed before and try to let the
rules “fire”, i.e. when their bodies are true, we add their heads to the atoms we
already have (this gives us p{a,b)).

To be more precise we introduce the immediate consequence operator Tp
which associates to any Herbrand model another Herbrand model.

î.e. 3cr : Qra = QQ.

14 2 DEFINITE LOGIC PROGRAMS

Example 2.6 (Tp)
Given a definite program P letTp : 2^^ Ji—>Tp(2)

Tp{I) ;= {A € Bp : there is an instantiation of a rule in P
s.t. A is the head of this rule and all
body-atoms are contained in i }

It turns out that Tp is monotone and continuous so that (by a general theorem
of Knaster-Tarski) the least fixpoint is obtained after w steps. Moreover we have

Theorem 2.7 (Tp and Mp)
Mp = T p r = lfp{Tp).

This approach is especially important in Database applications, where the
underlying language does not contain function symbols (DATALOG) — this
ensures the Herbrand universe to be finite. Under this condition the iteration
stops after finitely many steps. In addition, rules of the form

pi-p

do not make any problems. They simply can not be applied or do not produce
anything new. Note that in the Top-Down approach, such rules give rise to infi
nite branches! Later, elimination of such rules will turn out to be an interesting
property. We therefore formulate it as a principle:

Principle 2.8 (Elim ination of Tautologies)
Suppose a program P has a rule which contains the same atom in its body as
well as in its head (i.e. the head consists of exactly this atom). Then we can
eliminate this rule without changing the semantics.

Unfortunately, such a bottom-up approach has two serious shortcomings.
First, the goal-orientedness from SLD-resolution is lost; we are always comput
ing the whole Mp, even those facts that have nothing to do with the query.
The reason is that in computing Tp we do not take into account the query we
are really interested in. Second, in any step facts that are already computed
before are recomputed again. It would be more efficient if only new facts were
computed. Both problems can be (partially) solved by appropriate refinements
of the naive approach:

• Semi-naive bottom-up evaluation ([Bry90, U1189b]),

• Magic Sets techniques ([BR91, U1189a]).

2.3 H erbrand-M odels and th e un derly ing language

Usually when we represent some knowledge in first order logic or even in logic
programs, it is understood that the underlying language is given exactly by the

2.3 Herbrasid-Models and the underlying language 15

symbols that occur in the formal theory. Suppose we have represented some
knowledge about the world as a theory T in a language £. Classical predicate
logic formalizes the notion of a formula (j) derivable from the theory T. This
means that 4> is true in all models of T (we denote this set by MOD(T)). Why
are we considering all models? Doesn’t it make sense to look only at Herbrand
models, i.e. to models generated by the underlying language? After all we are
not interested in models that contain elements which are not representable as
terms in our language. These requirements are usually called Unique Names
Assumption and Domain Closure Assumption:

Definition 2.9 (U N A and DCA)
Let a language C be given. We understand by the Unique Names Assumption
the restriction to those models T, where syntactically different ground C-terms
ti, Í2 o.re interpreted as nonidentical elements: if is not identical to i f .

By the Domain Closure Assumption we mean the restriction to those models
I where for any element a inX there is a C-term t that represents this element:
a — t^.

As an example, in Theorem 2.5 of Section 2.1 we referred to Mp, the least
Herbrand model of P. The reason that the first equivalence in this theorem
holds is given by the fact that for universal theories T and existential formulae
4> the following holds

MOD(T) 1= (A iff Herb£-MOD(T) |= <A.

In our particular case, where T is a definite program P, we can even replace
Herb£-MOD(T) in the above equation by the single model Mp.

This last result does not hold in general. But what happens if we never
theless are interested in only the Herbrand-models of a theory T (and therefore
automatically'* assume UNA and DCA)? At first sight one can argue that such
an approach is much simpler; in contrast to all models we only need to take care
about the very specific Herbrand models. But it turns out that determining the
truth of a formula in all Herbrand models is a much more complex task (namely
Hj-complete) than to determine if it is true in all models. This latter task is
also undecidable in general, but it is recursively enumerable, i.e. Hj-complete.
The fact that this task is recursively enumerable is the content of the famous
completeness theorem of Gödel, where “truth of a formula in all models” is
shown to be equivalent to deriving this formula in a particular axiomatization
of the predicate calculus of first order. We refer to the appendix (Section A.l
and Section A.2) where the necessary notions are introduced.

But we have still a problem with Theorem 2.5 in our restricted setting:

‘'The only difference between Herbrand models and models satisfying UNA and DCA is
that the interpretation of terms is uniquely determined in Herbrand models. It is required
that a term “/(t i,. •. , /n)” is interpreted in a Herbrand model I as , . . . , tj)”.

16 2 DEFINITE LOGIC PROGRAMS

Example 2.10 (Universal Query Problem)
Consider the program P := p{a), the query Q p(x) and the empty substitution
0 := e. We have

• M p 1= Vxp(x)

• but SLD only computes the answer x/a.

Przymusinski called this the universal query problem.

There are essentially two solutions to avoid this behaviour: to use a language
which is rich enough (i.e. contains sufficiently many terms, not only those ocur-
ring in the program P itself) or to consider arbitrary models, not only Herbrand
models. Both approaches have been followed in the literature but they are be
yond the scope of this paper.

2.4 W h y going beyond D efin ite Program s?

So far we have a nice query-answering procedure, SLD-Resolution, which is goal-
oriented as well as sound and complete with respect to general derivability. But
note that up to now we are not able to derive any negative information. Not
even our queries allow this. From a very pragmatic viewpoint, we can consider
‘̂ not A" to be derivable if A is not. Of course, this is not sound with respect to
classical logic but it is with respect to Mp.

In KR we do not only want to formulate negative queries, we also want to
express default-statements of the form

Normally, unless something abnormal holds, then ifj implies 4>.

Such statements were the main motivation for nonmonotonic logics, like Default
Logic or Circumscription (see Section A.3 and Section A.4 of the appendix).
How can we formulate such a statement as a logic program? The most natural
way is to use negation “noi ”

<j) xp, not ab

where ab stands for abnormality. Obviously, this forces us to extend definite
programs by negative atoms.

A typical example for such statements occurs in Inheritance Reasoning. We
take the following example from [BG94]:

Example 2.11 (Inheritance Hierachies)
Suppose we know that birds typically fly and penguins are non-flying birds. We
also know that Tweety is a bird. Now an agent is hired to build a cage for
Tweety. Should the agent put a roof on the cage? After all it could be still the
case that Tweety is a penguin and therefore can not fly, in which case we would

2.4 Why going beyond Definite Programs? 17

not like to pay for the unneccessary roof. But under normal conditions, it should
be obvious that one should conclude that Tweety is flying.

A natural axiomatization is given as follows:

not ab{ri, x)Înheritance • flies{x) •(- bird(x),
bird{x) •1- penguin{x)
ab{ri,x) <r- penguin{x)
make-top{x) <- flies{x)

together with some particular facts, like e.g. birdfTweety) and penguin{Sam).
The first rule formalizes our default-knowledge, while the third formalizes that
the default-rule should not be applied in abnormal or exceptional cases. In our
example, it expresses the famous Specificity-Principle which says that more spe
cific knowledge should override more general one ([THT86]).

For the query “make-top{Tweety)” we expect the answer “yes” while for
“make-top{Sam)” we expect the answer “no”.

Another important KR task is to formalize knowledge for reasoning about
action. We again consider a particular important instance of such a task, namely
temporal projection. The overall framework consists in describing the initial
state of the world as well as the effects of all actions that can be performed.
What we want to derive is how the world looks like after a sequence of actions
has been performed.

Example 2.12 (Temporal Projection: Yale-Shooting Problem)
We distinguish between three sortŝ of variables:

• situation variables: S, S',...,

• fluent variables: F,F',...,

action variables: A, A'

The initial situation is denoted by the constant Sq, and the two-ary function
symbol res{A,S) denotes the situation that is reached when in situation S the
action A has been performed. The relation symbol holds{F,S) formalizes that
the fluent F is true in situation S.

For the YSP there are three actions (wait, load and shoot) and two fluents
(alive and loaded). Initially a turkey called Fred is alive. We then load a gun,
wait and shoot. The effect should be that Fred is dead after this sequence of
actions. The common-sense argument from which this should follow is the

Law of Inertia: Things normally tend to stay the same. *

*To be formally correct we have to use many-sorted logic. But since all this could also be
coded in predicate logic by using additional relation symbols, we do not emphasize this fact.
We also understand that instantiations are done in such a way that the sorts are respected.

18 2 DEFINITE LOGIC PROGRAMS

Using our intuition from the last example, a natural formalization is given as
follows:

Py s p '■ holds{F,res{A,S))
holds{loaded, res{load, S))
ab(ri, shoot, alive, S)
holds{alive, Sq)

•f-

<r-
<-

holds{F,S), not ab{ri. A, F,S)

holds{loaded, S)

Such a straightforward formalization leads in most versions of classical non
monotonic logic to the unexpected result, that Fred is not neccesarily dead. But
obviously we expect to derive holds{alive,res{load, sq)) and

not holds{alive , res{shoot,res{wait,res{load, So))))

Up to now we only have stated some very “natural” axiomatizations of given
knowledge. We have motivated that something like default-negation “noi ”
should be added to definite programs in order to do so and we have explicitly
stated the answers to particular queries. What is still missing are solutions to
the following very important problems

• How should an appropriate query answering mechanism handling default-
negation ‘fiot ” look like?

• What is the formal semantics that such a procedural mechanism should be
checked against?

Such a semantics is certainly not classical predicate logic because of the default
character of “not ” — not is not classical Both problems will be considered
in detail in Section 3.

2.5 W h at is a Sem antics?

In the last subsections we have introduced two principles (Orientation and Elim
ination of Tautologies) and used the term semantics of a program in a loose,
imprecise way. We end this section with a precise notion of what we understand
by a semantics.

As a first attempt, we can view a semantics as a mapping that associates
to any program a set of positive atoms and a set of default atoms. In the case
of SLD-Resolution the positive atoms are the ground instances of all derivable
atoms. But sometimes we also want to derive negative atoms (like in our two
examples above). Our Orientation-Pnnciple formalizes a minimal requirement
for deriving such default-atoms.

Of course, we also want that a semantics SEM should respect the rules of P,
i.e. whenever SEM makes the body of a rule true, then SEM should also make
the head of the rule true. But it can (and will) happen that a semantics SEM
does not always decide all atoms. Some atoms A are not derivable nor are their

2.5 What is a Semantics? 19

default-counterparts not A. This means that a semantics SEM can view the
body of a rule as being undefined.

This already happens in classical logic. Take the theory

T := {{A/\B) DC, -A D B}.

What are the atoms and negated atoms derivable from T, i.e. true in all mod
els of T? No positive atom nor any negated atom is derivable! The classical
semantics therefore makes the truthvalue oi A /\ B undefined in a sense.

Suppose a semantics SEM treats the body of a program rule as undefined.
What should we conclude about the head of this rule? We will only require that
this head is not treated as false by SEM — it could be true or undefined as well.
This means that we require a semantics to be compatible with the program
viewed as a 3-valued theory — the three values being “true”, “false” and “un
defined” . For the understanding it is not neccessary to go deeper into 3-valued
logic. We simply note that we interpret as the Kleene-connective which is
true for “undefined <— undefined" and false for “false •(— undefined".

Our discussion shows that we can view a semantics SEM as a 3-valued model
of a program. In classical logic, there is a different viewpoint. For a given theory
T we consider there the set of all classical models MOD(T) as the semantics. The
intersection of all these models is of course a 3-valued model of T, but MOD(T)
contains more information. In order to formalize the notion of semantics as
general as possible we define

Definition 2.13 (SEM)
A semantics SEM is a mapping from the class of all programs into the powerset
of the set of all 3-valued structures. SEM assigns to every program P a set of
3-valued models of P:

SEM{P) C MODf:^^fiP).

This definition covers both the classical viewpoint (classical models are 2-
valued and therefore special 3-valued models) as well as our first attempt in the
beginning of this subsection. Later on, in most cases we will be really interested
only in Herbrand models.

Formally, we can associate to any semantics SEM in the sense of Defini
tion 2.13 two entailment relations

sceptical: SEM’‘̂®'’‘(P) is the set of all atoms or default atoms that are true
in all models of SEM(P).

credulous: SEM‘̂”' ‘̂ (P) is the set of all atoms or default atoms that are true
in at least one model of SEM(P).

In this tutorial we only consider the sceptical viewpoint. Also, to facilitate
notation, we will not formally distinguish between SEM and SEM®'̂ ®’’*. In cases

20 2 DEFINITE LOGIC PROGRAMS

where by definition SEM can only contain a single model (like in the case of
well-founded semantics) we will omit the outer brackets and write

SEM(P) = M

instead of SEM(P) = M. We will also slightly abuse notation and write I £
SEM(P) as an abbreviation for / £ M for all M £ SEM(P).

21

3 Adding Default-Negation
In the last section we have illustrated that logic programs with negation are
very suitable for KR — they allow a natural and straightforward formalization
of default-statements. The problem still remained to define an appropriate se
mantics for this class and, if possible, to find efficient query-answering methods.
Both points are adressed in this section.

We can distinguish between two quite different approaches:

LP-Approach: This is the approach taken mainly in the Logic Programming
community. There one tried to stick as close as possible to SLD-Resolution
and treat negation as “Finite-Failure”. This resulted in an extension of
SLD, called SLDNF-Resolution, a procedural mechanism for query an
swering. For a nice overview, we refer to [AB94].

NML-Approach: This is the approach suggested by non-monotonic reason
ing people. Here the main question is “What is the right semantics?”
I.e. we are looking first for a semantics that correctly fits to our intuitions
and treats the various KR-Tasks in the right (or appropriate) way. It
should allow us to jump to conclusions even when only little information
is available. Here it is of secondary interest how such a semantics can be
implemented with a procedural calculus. Interesting overviews are [Min93]
and [Dix95c].

The LP-Approach is dealt with in Section 3.1. It is still very near to clas
sical predicate logic — default negation is interpreted as Finite-Failure. To get
a stronger semantics, we interpret “not ” as Failure in Section 3.2. The main
difference is that the principle Elimination of Tautologies holds. We then intro
duce a principle GPPE which is related to partial evaluation. In KR one can see
this principle as allowing for definitional extensions — names or abbreviations
can be introduced without changing the semantics.

All these principles do not yet determine a unique semantics — there is
still room for different semantics and a lot of them have been defined in the last
years. We do not want to present the whole zoo of semantics nor to discuss their
merits or shortcomings. We refer the reader to the overview articles [AB94] and
[Dix95c] and the references given therein. We focus on the two main competing
approaches that still have survived. These are are the Wellfounded semantics
WFS (Section 3.3) and the Stable semantics STABLE (Section 3.4). Finally,
in Section 3.5 we discuss complexity and expressibility results for the semantics
presented so far.

3.1 N egation -as-F in ite-F a ilu re

The idea of negation treated as finite-failure can be best illustrated by still con
sidering definite programs, but queries containing default-atoms. How should
we handle such default-atoms by modifying our SLD-resolution? Let us try this:

22 3 ADDING DEFAULT-NEGATION

• If we reach a default-atom “noi A" as a subgoal of our original query, we
keep the current SLD-tree in mind and start a new SLD-tree by trying to
solve “A”.

• If this succeeds, then we falsified “not A'\ the current branch is failing
and we have to backtrack and consider a different subquery.

• But it can also happen that the SLD-tree for “A” is finite with only failing
branches. Then we say that A finitely fails, we turn back to our original
SLD-tree, consider the subgoal “not A” as successfully solved and go on
with the next subgoal in the current list.

It is important to note that an SLD-tree for a positive atom can fail without
being finite. The SLD-tree for the program consisting of the single rule p p
with respect to the query p is infinite but failing (it consists of one single infinite
branch). In Figure 1 the leftmost branch is also failing but infinite.

Although this idea of Finite-Failure is very procedural in nature, there is
a nice modeltheoretical counterpart — Clark’s completion comp{P) ([Cla78]).
The idea of Clark was that a program P consists not only of the implications,
but also of the information that these are the only ones. Roughly speaking, he
argues that one should interpret the “^ ’’-arrows in rules as equivalences “=”
in classical logic. We do not give the exact definitions here, as they are very
complex; in the non-propositional case, a symbol for equality, together with
axioms describing it®, has to be introduced. However, for the propositional
case, comp{P) is obtained from P by just

1. collecting all given clauses with the same head into one new “clause” with
this respective head and a disjunctive body (containing all bodies of the
old clauses), and

2. replacing the implication-symbols “4-” by .

Definition 3.1 (Clark’s Completion comp{P))
Clark’s semantics for a program P is given by the set of all classical models of
the theory comp{P).

We can now see the classical theory comp{P) as the information contained in
the program P. comp{P) is like a sort of closed world assumption applied to
P. We are now able to derive negative information from P by deriving it from
comp{P). In fact, the following soundness and completeness result for definite
programs P and definite queries Q = f\iAi (consisting of only positive atoms)
holds:

®CET: Clark’s Equational Theory. CET(£p) axiomatizes the equality theory of all
Herbrand(£p)-models. See [MMP88, She88a] for the problem of equality and the underlying
language.

3.1 Negation-as-Finite-Failure 23

Theorem 3.2 (COMP and Fair FF-Trees)
The following conditions are equivalent:

• comp{P) t= V-iQ

• Every fair SLD-tree for P with respect to Q is finitely failed.

Note that in the last theorem we did not use default negation but classical
negation because we just mapped all formulae into classical logic. We need
the fairness assumption to ensure that the selection of atoms is reasonably well
behaving: we want that every atom or default-atom occurring in the list of
preliminary goals will eventually be selected.

But even this result is still very weak — after all we want to handle not
only negative queries but programs containing default-atoms. From now on we
consider programs with default-atoms in the body. We usually denote them by

A 4- B"*” A not B~,

where contains all the positive body atoms and not B~ all default atoms
“not C”.

Our two motivating examples in Section 2.4 contain such default atoms.
This gives rise to an extension of SLD, called SLDNF, which treats negation as
Finite-Failure

SLDNF = SLD -t- not L succeeds, if L finitely fails.

The precise definitions of SLDNF-reso/itieon, tree, etc. are very complex: we re
fer to [Llo87, Apt90]. Recently, Apt and Bol gave interesting improved versions
of these notions: see [AB94, Section 3.2]. In order to get an intuitive idea, it is
sufficient to describe the following underlying principle:

Principle 3.3 (A “Naive” SLDNF-Resolution)
If in the construction of an SLDNF-tree a default-atom not Lij is selected in
the list Li — {Lii,I/j2 , ...}, then we try to prove Lij.
If this fails finitely (it fails because the generated subtree is finite and failing),
then we take not Lij as proved and we go on to prove .
If Lij succeeds, then not Lij fails and we have to backtrack to the list £ , - 1

preliminary subgoals (the next rule is applied: “backtracking”).
of

Does SLDNF-Resolution properly handle Examples 2.11 and 2.12? It does
indeed:

Inheritance: The query makeJtopiTweety) generates an SLD-tree with one
main branch, the nodes of which are:

flies{Tweety),
birdiTweety), not ab{ri,Tweety),
not ab{ri,Tweety),
Success.

24 3 ADDING DEFAULT-NEGATION

The third node has a sibling-node penguin{Tweety), not ab{ri,Tweety)
which immediately fails because Tweety does not unify with Sam. The
Success-node is obtained from not ab{ri, Tweety) because the correspond
ing SLD-tree for ab{ri,Tweety) fails finitely (this tree consists only of
ab{ri, Tweety) and penguin{Tweety)).

YSP: The crucial query is

?- not holds{alive , res{shoot,res{wait,res{load, Sq)))).

So we consider ?- holds {alive, res{shoot,res{wait,res{load,so)))). Again
the SLD-tree for this query consists mainly of one branch: the nodes are
obtained from the query by applying successively the first program rule
{law of inertia). By evaluation of the holds-predicate, we eventually ar
rive at the fact holds{alive, sq) and the ^̂ not ab” predicates remain to
be solved. For any of these predicates we again have to consider sepa
rate SLD-trees. But for ab{ri, shoot, alive,res{wait,res{load, so))) it is
easy to see that the associated tree already finitely fails (because it gener
ates the subgoal '̂ not ab{ri, wait, loaded, res{load,so))” the correspond
ing SLD-tree of which immediately finitely fails) and therefore, since no
backtracking is possible, the tree for

?- holds{alive, res{shoot,res{wait,res{load,so))))

finitely fails and our original query succeeds: Fred is dead.

Up to now it seems that SLDNF-resolution solves all our problems. It han-
dels our examples correctly, and is defined by a procedural calculus strongly
related to SLD. There are two main problems with SLDNF:

• SLDNF can not handle free variables in negative subgoals,

• SLDNF is still too weak for Knowledge Representation.

The latter problem is the most important one. By looking at a particular
example, we will motivate in Section 3.2 the need for a stronger semantics.
This will lead us in the remaining sections to the wellfounded and the stable
semantics.

For the rest of this section we consider the first problem, known as the
Floundering Problem. This problem will also occur later in implementations
of the wellfounded or the stable semantics. We consider the program Pfiounder
consisting of the three facts

p{c,c), q{b), r{f{c)).

Our query is ? — p{x,c),not q{x),r{f{x)), that is, we are interested in instan
tiations of X such that the query follows from the program. The situation is

3.1 Negation-as-Finite-Failure 25

<— p (X, c) , -q(x), r(f(x))

<— -q(c), r(f (c))

} test

<— p(x,c), ~q(x), r(f{x))

I test___

success

<— q(c)

fail
"Fail"

<-- q(x)

success
(x/b)

r(f(c))
"Success"

Figure 2: The Floundering-Problem

illustrated in Figure 2. Let us suppose that we always select the first atom or
default-atom: it is underlined in the sequel. The SLDNF-tree of this trivial
example is linear and haa three nodes: the first node is the query itself

? - pjx,c), not q{x),r{f{x)),

the second node is ? — not q{c),r{f{c)). Now, we enter the negation-as-failure
mode and ask ? —g(c). This query immediately fails (the generated tree exists, is
finite and fails) so that we give back the answer “yes, the default atom not q{c)
succeeds and can be skipped from the list”. The last node is ? — r(/(c)) which
immediately succeeds.

Note that in the last step, the test for ? — q{c) has to be finished before the
tree can be extended. If we get no answer, the SLDNF-tree simply does not
exist: this can not happen with SLD-trees.

So far everything was fine. But what happens if we select the second atom
in 'the first step

? - p{x, c),not q{x), r{f{x))?

Example 3.4 (Floundering)
We again consider the program P/iounder consisting of the three facts

p(c,c), q{b), r{f{c)).

Our query is ? —p{x,c), not q{x),r{f{x)), and in the first step we will select the
second default-atom, i.e. one with a free variable. Thus we enter the negation-
as-failure mode with the query ? — not q{x). In this case, x may be instantiated
to b so that we have to give back the answer “no, the default-atom not q{x)
fails” and the whole query will fail. This is because SLDNF treats the sub
goal as “ixnot q{x)” instead of ‘Sxnotq{x)” which is intended. There exist

26 3 ADDING DEFAULT-NEGATION

approaches to overcome this shortcoming by treating negation as constructive
negation; see [Cha88, CW89, Dra94]-

In the classical SLDNF-resolution negation-as-finite-failure is only a test, no
bindings are produeed. On the one hand this may be considered a shortcoming,
on the other hand, it makes the SLDNF procedure more tractable. Note that
the problem to decide if a given program flounders is undecidable [Bör87]). See
also [She91] for more unsolvable problems related to SLDNF.

SLDNF is a procedural mechanism. It would be nice to have a modeltheoret-
ical counterpart. In Theorem 3.2 we already related a restricted form of finite
failure to Clark’s completion. We will see later that comp{P) is inconsistent
even in cases where we would not expect it. Therefore Fitting [Fit85] intro
duced a three-valued formulation comp3 {P) of the original completion. Kunén
([Kun87]) then proved in the propositional case SLDNF is sound and complete
with respect to compz{P).

In the predicate logic case, SLDNF is not complete but it is always cor
rect [She8 8 b, Theorem 39]) with respect to compz{P): given a query Q,

• if SLDNF succeeds with answer 0, then compz{P) [= 3 VQ0, and

• if SLDNF fails, then compz{P) | = 3 -BQ.

This correctness result is also the reason for the incompleteness of SLDNF with
respect to two-valued comp{P). It states that any formula derivable by SLDNF
is a three-valued consequence of compz{P). But, since there are two-valued
consequences of a theory that are not three-valued ones (three-valued logic is
weaker than two-valued logic), SLDNF can not be complete. Extensions of
the above completeness result to certain subclasses of predicate logic programs
require severe restrictions on the syntactic form of P. To define these syntactic
restrictions, we need the notion of the dependency-graph:

Definition 3.5 (Dependency-Graph Qp)
For a logic program P with negation, the dependency graph Qp is a finite di
rected graph whose vertices are the predieate symbols from P. There is a positive
(respectively negative ̂ edge from R to R' iff there is a elause in P with R in
its head and R' oecurring positively (respectively negative) in its body.

We also say

• R depends on R' if there is a path in Qp from R to R' (by definition, R
depends on itself),

• R depends positively (resp. negatively ̂ on R' if there is a path in Qp
from R to R' containing only positive edges (resp. at least one negative
edge), (by definition R depends positively on itself), •

• R depends evenly (resp. oddly ̂ on R' if there is a path in Qp from R to
R' containing an even (resp. odd) number of negative edges (by definition
R depends evenly on itself).

\
3.2 Negation-as-Failure 27

Prog. P Semantics Completeness

allowed -f hierarchical
allowed -h stratified

allowed

comp{P)
comp{P)
compsiP)

yes, no recursion at all
yes, if P U {t— >1} strict
yes, w.r.t. I- 3

allowed -1- call-consistent compfP) yes, if P U {t— A} strict:
comp(P) h VA iff
compz{P) 1 -3 VA

Table 1: Completeness for SLDNF

The following properties of a program P turn out to be very important:

stratified: no predicate depends negatively on itself ,̂
strict: there are no dependencies that are both even and odd,
call-consistent: no predicate depends oddly on itself®,
allowedness: every variable occurring in a clause must occur in

at least one positive atom of the body of that clause.

Strictness and allowedness turn out to be the most important restrictions that
imply completeness results for SLDNF:

While strictness excludes situations of the form p(a;) <— q{x),p{c) <- -'q{f{c')),
allowedness excludes constructs of the form equal{x,x) <— and also solves the
floundering-problem.

Strictness implies that comp3 {P) and comp{P) axe equivalent [Kun89])

compz{P) ^ = 3 VQ0 iff comp{P) |= VQ0.

Table 1 gives an overview of the different completeness results. Note that the
query A is always considered to be allowed.

Much work was done in LP (see [DC90, BM8 6 , Sta94]) to find other syntac
tically characterizable classes, for which SLDNF is also complete.

3.2 N egation-as-F ailure

Let us first illustrate that SLDNF answers quite easily our requirements of a
semantics SEM (stated explicitly in Definition 2.13). We can formulate these

ôr: there are no cycles containing at least one edge.
®or: there are no odd cycles.

28 3 ADDING DEFAULT-NEGATION

requirements as two program-transformations (they will be used later for com
puting a semantics). We call them Reductions for obvious reasons.

Principle 3.6 (Reduction)
Suppose we are given a program P with possibly default-atoms in its body. If
a ground atom A does not unify with any head of the rules of P, then we can
delete in every rule any occurrence of 'hot A ” without changing the semantics.

Dually, if there is an instance of a rule of the form “B ” then we can
delete all rules that contain 'hot B ” in their bodies.

It is obvious that SLDNF “implements” these two reductions automatically.
The weakness of SLDNF for Knowledge Representation is in a sense inherited
from SLD. When we consider rules of the form “p t- p”, then SLD resolution
gets into an infinite loop and no answer to the query ?- p can be obtained. This
has often the effect that when we enter into negation-as-failure mode, the SLD-
tree to be constructed is not finite, although he is not successful and therefore
should be considered as failed.

Let us discuss this point with a more serious example.

Example 3.7 (The Transitive Closure)
Assume we are given a graph consisting of nodes and edges between some of
them. We want to know which nodes are reachable from a given one. A natural
formalization of the property “reachable” would be

reachable(x) t— edge{x,y),reachable{y).

What happens if we are given the following facts

edge{a,b), edge{b,a), edge{c,d)

and reachable(c) ? Of course, we expect that neither a nor b are reachable be
cause there is no path from c to either a or b.

But SLDNF-Resolution does not derive 'hot reachable{a) ”!

How does this result relate to Theorem 3.2? Note that our query has exactly
the form as required there. Clark’s completion of our program rule is

reachable{x) = (i = c V 3y {reachable{y) A edge{y,x)))

from which, together with our facts about the edge-relation, ~̂ reachable{a) is
indeed not derivable. This is due to the wellknown fact that transitive closure
is not expressible in first order predicate logic.

Note also that our Principle 2.8 does not help, because it simply does not
apply. It turns out that we can augment our two principles by a third one, that
constitutes together with them a very nice calculus handling the above example
in the right way. This principle is related to Partial Evaluation, hence its

3.2 Negation-as-Failure 29

name GPPE®. Let us motivate this principle with the last example. The query
“not reachable(a)” leads to the rule “reachable{a) t— edge{a,b),reachable{b)”
and “reachable{b)” leads to “reachable{b) •<— edge(b,a),reachable{a)’\ Both
rules can be seen as definitions for reachable{a) and reachable{b) respectively.
So it should be possible to replace in these rules the body atoms of reachable
by their definitions. Thus we obtain the two rules

reachable{a) i— edge{a,b),edge{b,a),reachable{a)
reachable(b) <r- edge{b,a),edge{a,b),reachable{b)

that can both be eliminated by applying Principle 2.8. So we end up with a
program that does neither contain reachable{a) nor reachable{b) in one of the
heads. Therefore, according to Principle 2.3 both atoms should be considered
false. The precise formulation of this principle is as follows:

Principle 3.8 (G PPE)
We say that a semantics SEM satisfies GPPE, if the following transformation
does not change the semantics. Replace a rule A -f- A not B~ where B'̂
contains a distinguished atom B by the rules

>1u(A\{jB}) t- {B+ \{B))\jB t f\ not {B-GB-) (i = l,...,n)

where Ai Bf A not B~ (i = 1,... ,n) are all the rules with B £ Ai.

Note that any semantics SEM satsfying GPPE and Elimination of Tautolo
gies can be seen as extending SLD by doing some Loop-checking. We will call
such semantics NMR-semantics in order to distinguish them from the classi
cal LP-semantics which are based on SLDNF or variants of Clark’s completion
comp{P):

• NMR-Semantics — SLDNF ■+■ Loop-check.

The following, somewhat artificial example illustrates this point.

Example 3.9 (COM P vs. NM R)

Pnmr '■ P <r- P pi
^NMR ■ p <- p

q <- not p q not p
r f— not r

comp{PNMR) ■■ p = P c<ymp{P'^MR) ■ P ^ P
q = -.p q = -np

r = -ir

?-q: No (COMP). ?-p: Yes (COMP)
Yes (NMR). No (NMR).

®Generalized Principle of Partial Evaluation

30 3 ADDING DEFAULT-NEGATION

For both programs, the answers of the completion-semantics do not match our
NMR-intuition! In the case of Pn m r we expect q to be derivable, since we
expect not p to be derivable: the only possibility to derive p is the rule p p
which, obviously, will never succeed. But q ^ Th{{q = ~'p}) = comp{Pj\fMR)!
In the case of we expect p not to be derivable, for the same reason: the
only possibility to derive p is the rule p -h- p. But p € Fml = Th{{r = “'T'}) =
c o m p { P ' f ^ M R) ' -

Note that the answers of the completion-semantics agree with the mechanism
of SLDNF: p p represents a loop. The completion of P' is inconsistent: this
led Fitting to consider the three-valued version of comp{P) mentioned at the end
of Section 3.1. This approach avoids the inconsistency (the query ? — p is not
answered “yes”) but it still does not answer “no” as we would like to have.

The last principle in this section is related to Subsumption: we can get rid
of non-minimal rules by simply deleting them.

Principle 3.10 (Subsum ption)
In a program P we can delete a rule A -f— Anot B~ whenever there is another
rule A i- B'^ A not B'~ with

B'^ C B+ andB'~ C /?-.

As a simple example, the rule A <- B,C, not D, not E is subsumed by the 3
rules A t— C, not D, not E or A i- B,C, not E and by A C, not E.

3.3 T h e W ellfounded Sem antics: W FS

The wellfounded semantics, originally introduced in [vGRS88], is the weakest
semantics satisfying our 4 principles (see [BD95a, Dix95b]). We call a semantics
SEMi weaker than SEM2 , if for all programs P and all atoms or default-atoms
I the following holds: SEMi(P) \= I implies SEM2 (P) \= 1. I.e. all atoms
derivable from SEMi with respect to P are also derivable from SEM2 . This is
a nice theorem and gives rise to the following definition:

Theorem 3.11 (W FS)
There exists the weakest semantics satisfying our four principles Elimination
of Tautologies, Reduction, Subsumption and GPPE. This semantics is called
wellfounded semantics WFS.

It can also be shown, that for propositional programs, our transformations can
be applied to compute this semantics.

Theorem 3.12 (Confluent Calculus for W FS)
The calculus consisting of these four transformations is confluent, i.e. whenever
we arrive at an irreducible program, it is uniquely determined. The order of the
transformations does not matter.

3.3 The Wellfounded Semantics: WFS 31

For finite propositional programs, it is also terminating: any program P is
therefore associated a unique normalform res{P). The wellfounded semantics
of P can he read off from res{P) as follows

WFS{P) — {A : A G res{P)} U {not A : A is in no head of res{P)}

Therefore the wellfounded semantics associates to every program P with nega
tion a set consisting of atoms and default-atoms. This set is a 3-valued model of
P. It can happen, of course, that this set is empty. But it is always consistent,
i.e. it does not contain an atom A and its negation not A. Moreover, it extends
SLDNF: whenever SLDNF derives an atom or default-atom and does not floun
der, then WFS derives it as well. Therefore the two examples of Section 2.4 are
handled in the right way. But also for Example 3.7 we get the desired answers.

As we said above, loop-checking is in general undecidable. Therefore WFS
is in the most general case where variables and function-symbols are allowed,
undecidable. Only for flnite propositional programs it is decidable. In fact, it is
of quadratic complexity (see Section 3.5).

Let us end this section with another example, which contains negation.

Example 3.13 (Van G elder’s Example)
Assume we are describing a two-players game like checkers. The two players
alternately move a stone on a board. The moving player wins when his opponent
has no more move to make. We can formalize that by

• wins(x) G- move-from-to(x,y), not wins(y)

meaning that

• the situation x is won (for the moving player A), if he can lead oveP'̂ to
a situation y that can never be won for B.

Assume we also have the facts move.fromJ,o{a,h), move.frcnnJo{b,a) and
move.frcmi-to{b,c). Our query to this program Pgame is ?- wins{b). Here we
have no problems with floundering, but using SLDNF we get an infinite sequence
of oscillating SLD-trees (none of which finitely fails).

WFS, however, derives the right results

W F S { P g a m e) — {not wins{c),wins{b), not wins{a)}

which matches completely with our intuitions.

*®With the help of a regular move, given by the relation move-from.to{,).

32 3 ADDING DEFAULT-NEGATION

3.4 T h e S tab le Sem antics: ST A B LE

We defined WFS as the weakest semantics satisfying our four principles. This
already indicates that there are even stronger semantics. One of the main
competing approaches is the stable semantics STABLE. The stable semantics
associates to any program P a set of 2-valued models, like classical predicate
logic. STABLE satisfies the following property, in addition to those that have
been already introduced:

Principle 3.14 (Elim ination of Contradictions)
Suppose a program P has a rule which contains the same atom A and not A in
its body. Then we can eliminate this rule without changing the semantics.

This principle can be used, in conjunction with the others to define the stable
semantics

Theorem 3.15 (STABLE)
There exists the weakest semantics satisfying our five principles Elimination
of Tautologies, Reduction, Subsumption, GPPE and Elimination of Contradic
tions.

If a semantics SEM satisfies Elimination of Contradictions it is based on 2-
valued models ([BD95b]). The underlying idea of STABLE is that any atom in
an intended model should have a definite reason to be true or false. This idea
was made explicit in [BF91a, BF91b] and, independently, in [GL8 8]. We use
the latter terminology and introduce the Gelfond-Lifschitz transformation: for
a program P and a model N C Bp we define

P^ := {rule^ : rule E P}

where rule := A i- B i,..., Bn, not C\,

{rule)^ := I ^

I not Cm is transformed as follows

Bi, . . . ,Bn, i i '^j- .Cj^N,
otherwise.

Note that P^ is always a definite program. We can therefore compute its least
Herbrand model MpN and check whether it coincides with the model N with
which we started:

Definition 3.16 (STABLE)
N is called a stable modeÛ of P iff MpN = N.

What is the relationship between STABLE and WFS? We have seen that
they are based on rather identical principles.

• Stable models N extend WFS: I E WFS(P) implies N \= I.

N̂ote that we only consider Herbrand models.

3.4 The Stable Semantics; STABLE 33

• If WFS(P) is two-valued, then WFS(P) is the unique stable model.

But there are also differences. We refer to Example 3.13 and consider the
program P consisting of the clause

wins{x) t— move-fromJ,o(x,y), not wins{y)

together with the following facts: move.from-to{a,b), Tnove-fromJo{b,a), as
well as move-fromJo{b,c) , and move.from-to{c,d). In this particular case
we have two stable models: {■wins(a), wins{c)} and {wins{b), wins{c)} and
therefore

WFS(P) = {wins{c), not wins{d)} = P| A/".
A/" a stable model of P

This means that the 3-valued wellfounded model is exactly the set of all atoms
or default-atoms true in all stable models. But this is not always the case, as
the program of PspUtUng shows:

Example 3.17 (Reasoning by cases)

Bsplit t ing a not b
b <r- not a
P <- a
P f- b

Although neither a, nor b can be derived in any semantics based on two-valued
models (as STABLE for example), the disjunction aV b, thus also p, is true.
In this way the example is handled by the completion semantics, too. WFS(P),
however, is empty; if the WPS cannot decide between a or not a, then a is
undefined.

The main differences between STABLE and WFS are

• STABLE is not always consistent,

• STABLE does not allow for a goal-oriented implementation.

The inconsistency comes from odd, negative cycles

STABLE{p <- not p) = 0.

The idea to consider 2-valued models for a semantics neccessarily implies its
inconsistency ([BD95b]). Note that WFS{p t— not p) ~ {0} which is quite
different! Sufficient criteria for the existence of stable models are contained
in [Dun92, Fag93].

That STABLE does not allow for a Top-Down evaluation is a more seri
ous drawback and has nothing to do with inconsistency. This behaviour led

34 3 ADDING DEFAULT-NEGATION

Dix to define the notion of Relevance and Modularity (see Section 7.1 and
[Dix92a, Dix92b, Dix95b]. Recently, Bry reinvented Modularity (he termed
it compositionality) and argued that a semantics should satisfy it.

Example 3.18 (STABLE is not Goal-Oriented)

rel{a) a <r- not b P : a <r- not b
b t— not a b <r- not a

P <- not p
P <- a

Prei{a) Subprogram of P that consists of all rules that are relevant to
answer the query ?- a. It has two stable models {a} and {&} — a is not true in
all of them. But the program P has the unique stable model {p,a}, so a is true
in all stable models of P.

The last example shows that the truthvalue of an atom a also depends on atoms
that are totally unrelated with a! This is considered a drawback of STABLE
by many people. Note that a straightforward modification of STABLE is not
possible ([DM94b, DM94c]).

We end this section with another description of WFS and STABLE that will
be useful in later sections. It was introduced in [BS91, BS92]:

Definition 3.19 (Antim onotone Operator jp)
For a program P and a set N C Bp we define an operator jp mapping Herbrand-
structures to Herbrand structures:

'yp{N) MpN.

It is easy to see that jp is antimonotone. Therefore its twofold application 7 ̂
IS monotone ([Tar55]).

Obviously, the stable models of a program P are exactly the fixpoints of 7 ^.
This is just a reformulation of Definition 3.16. WFS is related to 7 as follows

Theorem 3.20 (W FS and 7)̂
A positive atom A is in WFS(P) iff A £ Ifpi'Jp). A default-atom not A is in
WFS(P) iff A^gfpi'yj,):

WFS{P) = ifp(np) u {not A\ A ^ gfpirip)]-

Atom or default-atoms that do occur in neither of the two sets are undefined.

3.5 C om p lex ity and E xp ressib ility

In this section we collect some complexity results for the semantics considered
so far. The reason why NMR-semantics are in the general case (free variables

3.5 Complexity and Expressibility 35

Compl
1. ord. prog.

(with functions)

exity
prop. prog,

(no variables)
Mp

(P is Horn)
A: S°-compl.

not A: n°-compl.
linear in |P|

M^“PP

(P is stratified)
arithm.-compl.

is S°)
linear in |P|

COMP nj-compl. over IN co-NP-compl.

COMP3 Ilj-compl. over IN linear in |P|
STABLE nj-compl. over IN co-NP-compl.

REG-SEM nj;-compl. over IN co-NP-compl.
WFS nj-compl. over IN linear in x |P|
WFS' nj-compl. over IN co-NP-compl.
WFS+ nj-compl. over IN co-NP-compl.

Table 2: Complexity of Non-Disjunctive Semantics

and function symbols) undecidable is strongly related to loop-checking. Let us
consider the program

P{x) ^ P(f{x))

or, equivalently, the infinite propositional program

Po t - pi, Pi P2, ■ • • ,P i t - Pi + i , . . .

Any NMR-semantics should derive “not P{t)” (resp. “not pP) for all terms t,
but a procedure to detect such infinite loops is impossible in general. Our
principles GPPE and Elimination of Tautologies can detect finite loops.

Prom a modeltheoretic point of view it is easy to define a semantics that
derives “not P(t)”: we could just take all minimal Herbrand models as the
intended semantics. Of course, this does not change the general undecidability.

For the exact terminology, definitions and results presented in this section we
refer the interested reader to the following interesting overviews [Sch90, Sch92,
CS93]. Further results are contained in [EGM93, Sac93, CS90, EG93].
While Table 2 treats the complexity Table 3 treats the expressibility problem.
Some general explanations are appropriate;

Table 2: We consider the complexity of deciding if a given ground atom

36 3 ADDING DEFAULT-NEGATION

Expressibility
1. ord. prog,

(no functions)
Mp

(P is Horn)
C IND (thus C P)

COMP = co-NP
COMP3 = IND (thus C P)
STABLE = co-NP

REG-SEM = n^
WFS = IND (thus C P)
WFS' = IND (thus C P)
WFS+ = IND (thus C P)

Table 3: Expressibility of Non-Disjunctive Semantics

or default-atom is contained in the respective semantics (i.e. if it is true
in all intended models).

For the 1. column, we consider arbitrary first-order programs with func
tion symbols. We therefore get undecidability results of varying strength.
Since we restrict to Herbrand models, we can assume (by standard re
cursive encoding techniques, like Go del-numberings) that all models have
universes which are subsets of the natural numbers IN. The completeness
results mean that for every set of the respective complexity class there is
a program that defines this set under the respective sceptical semantics.
Unless indicated otherwise, there is no difference between deciding ground
atoms or ground negated atoms.

For the 2. column, we consider propositional programs. Hence we get
decidable problems of various degrees. We denote by |P| the total length
of the program and by #At the number of distinct proposition letters
in P. See also [BED92, Sch92, Imi91, MRT92, Wit91b, JdL92] for more
results on the complexity of propositional programs.

Table 3: Here we consider the expressibility (or expressive power) of
first order programs without function symbols. The idea is to distinguish
between EDB-relations (relations that do not appear in the head of a
program) and IDB-relations (which are contained in some heads). For a
given program P we can view any instance T> of the (finite) EDB-relations

3.5 Complexity and Expressibility 37

as an input argument and then compute the (finite) IDB-relations (the
output) under the respective sceptical semantics. So we are asking

What are the relations expressible with logic programs under cer
tain semantics?

Roughly speaking, a relation R over finite EDB’s V (i.e. for every finite
V is associated a relation on V) is expressible if there is a program
P containing an IDB-symbol r s. t. for every relational database V and
tuple t corresponding to r:

r(i) € SEM{P + V) if and only if i?(i) holds in V.

This is the classical notion of expressibility ([Sch90, EGM93]).
We are in particular interested to express all relations of some complexity
class (note that the complexity is always with respect to the finite rela
tional database as input, the program is fixed). It is well-known that the
relations inductively definable over V, we denote them by IND(P) (or sim
ply IND to avoid the explicit occurrence of the EDB), is a strict subclass
of the relations that are polynomial over T> (see [Bar75, Mos74, GurSSj).

It is worth noting that in the general predicate logic case, all semantics are
highly undecidable. The entries for comp and comps are to be understood as
restricted to Herbrand models.

In the propositional case, WES is of quadratic complexity (a folklore result —
for a proof see [Wit91a]), while STABLE is co-NP-complete. The low complexity
of WES can be traced back to Dowling and Gallier’s result whereby satisfiability
of Horn clauses can be tested in linear time([DG84]). In Dowling and Gallier’s
approach it is actually a minimal model of a Horn theory that is computed in
linear time. Since minimal models of Horn theories are equivalent to closures of
rules without negation the result is directly applicable to well-founded semantics
for logic programs with default-atoms.

As far as expressibility is concerned, STABLE is more expressive: all co-NP-
relations can be expressed, while WPS can only describe all inductively definable
relations. As an example, STABLE can express the satisfiability problem. WES
is not able to do this (unless the polynomial hierachy collapses).

38 4 ADDING EXPLICIT NEGATION

4 Adding Explicit Negation
So far we have considered programs with one special type of negation, namely
default negation. Default negation is particularly useful in domains where com
plete positive information can be obtained. For instance, if one wants to repre
sent flight connections from Budapest to the US it is very convenient to represent
all existing flights and to let default negation handle the derivation of negative
information. There are domains, however, where the lack of positive informa
tion cannot be assumed to support (or support with enough strength) that this
information is false. In such domains it becomes important to distinguish be
tween cases where a query does not succeed and cases where the negated query
succeeds. The following example was used by McCarthy to illustrate the issue.
Assume one wants to represent the rule: cross the railroad tracks if no train
is approaching. The straightforward representation of this rule with default
negation would be

crosstracks t— not train

It seems obvious that in many practical settings the use of such a rule would not
lead to intended behaviour, in fact it might even have disasterous consequences.
What seems to be needed here is the possibility of using a different negation
symbol representing a stronger form of negation. This new negation — we will
call it explicit negation — should be true only if the corresponding negated
literal can actually be derived. We will use the classical negation symbol -i to
represent explicit negation. The track crossing rule will be represented as

crosstracks ■strain

The idea is that this latter rule will only be applicable if -strain has been proved,
contrary to the first rule which is applicable whenever train is not provable.

In the next subsection we will shortly discuss that explicit negation is (or
should not be) classical negation and how it should interfere with default nega
tion. In the two following subsections we will generalize the semantics STABLE
and WFS, respectively, to programs with explicit negation.

4.1 E x p lic it vs. C lassical and Strong N eg a tio n

First we define the language we are using more precisely.

Definition 4.1 (Extended Logic Program)
An extended logic program consists of rules of the form

c i— ,..., On, not 6 x,..., not bm

where the ai,bj and c are literals, i.e., either propositional atoms or such atoms
preceded by the classical negation sign. The symbol 'hot ” denotes negation by
failure (default negation), denotes explicit negation.

4.2 STABLE for Extended Logic Programs 39

We have already motivated the need of a second kind of negation “-i” dif
ferent from “not ”. What should the semantics of “-i” be? Should it be just
like in classical logic? Note that classical negation satisfies the law of excluded
middle

AW-^A.

The following example taken from [APP96] shows that classical negation is
sometimes inappropriate for KR-tasks.

Example 4.2 (Behaviour of Classical Negation)
Suppose an employer has several candidates that apply for a job. Some of them
are clearly qualified while others are not. But there may also he some candidates
whose qualifications are not clear and who should therefore be interviewed in
order to find out about their qualifications. If we express the situation by

hire{X) <— qualified{X) and reject{X) iqualified{X)

then, interpreting ” as classical negation, we are forced to derive that every
candidate must either be hired or rejected! There is no room for those that
should be interviewed. Also, applying the law of excluded middle has a highly
non-constructive flavor.

Let us now again consider again the example crosstracks t— -strain from
the beginning of this section. Suppose that we replace -strain by freeJrack.
We obtain

crosstracks t— freeJrack.

From this program, “not crosstracks” will be derivable for any semantics. There
fore we should make sure that “not crosstracks” is cdso derivable from crosstracks t—
-strain — after all, the second program is obtained from the first one by a sim
ple syntactic operation. This means we have to make sure that default negation
“not ” treats positive and negative atoms symmetrically.

Such a negation, we will call it explicit will be introduced in the next two
subsections. Note that Gelfond/Lifschitz called the negation they introduced in
their stable semantics classical, although it is not classical in the sense that we
just discussed. Sometimes explicit negation is also called strong negation and
denotes still a variant of our explicit negation. In [APP96] the authors introduce
both a strong and explicit negation and discuss their relation with classical and
default negation at length.

4.2 ST A B LE for E xten d ed Logic Program s

The extension of STABLE to extended logic programs is based on the notion
of answer sets which generalize the original notion of stable models in a rather
straightforward manner. Let us first introduce some useful notation. We say
a rule r = c •(- a i,..., a„, noi bi,...,not öm S P is defeated by a literal /

40 4 ADDING EXPLICIT NEGATION

I — bi for some i £ ,m}. We say r is defeated by a set of literals
X \i X contains at least one literal that defeats r. Furthermore, we call the
rule obtained by deleting weakly negated preconditions from r the monotonic
counterpart of r and denote it with Mon{r). We also apply Mon to sets of rules
with the obvious meaning.

Definition 4.3 (X-reduct)
Let P be an extended logic program, X a set of literals. The X-reduct of P,
denoted P ^ , is the program obtained from P by

• deleting each rule defeated by X, and

• replacing each remaining rule r with its monotonic counterpart Mon(r).

Definition 4.4 (Consequences of Rules)
Let R be a set of rules without negation as failure. Cn{R) denotes the smallest
set of literals that is

1. closed under R, and

2. logically closed, i.e., either consistent or equal to the set of all literals.

Definition 4.5 (yp)
Let P be a logic program, X a set of literals. Define an operator jp as follows:

jp{X) = Cn{P^)

X is an answer set of P iff X = jp{X).

A literal I is a consequence of a program P under the new semantics, denoted
I E STABLE{P), iff I is contained in all answer sets of P.

It is not difficult to see that for programs without explicit negation stable
models and answer sets coincide. Here is an example involving both types of
negation. The example describes the strategy of a certain college for awarding
scholarships to its students. It is taken from [BG94]:

Pel : (1) eligible{x) <- highGPA{x)
(2) eligible{x) E- minority{x), fairGPA{x)
(3) -<eligible{x) -^fairGPA{x),^highGPA{x)
(4) interview{x) t— not eligible{x),not ~̂ eligible{x)

Assume in addition to the rules above the following facts about Anne are given:

fairGPA(Anne), -<highGPA{Anne)

We obtain exactly one answer set, namely

{f airGPA{Anne), ->highGPA{Anne),interview{Anne)}

4.2 STABLE for Extended Logic Programs 41

Anne will thus be interviewed before a decision about her eligibility is made. If
we use the above rules together with the facts

minority {Mike), fairGPA(Mark)

then the program entails eligible{Mike).
The following results are taken from [Lif96];

Lemma 4.6 (Program Types)
Let P be an extended logic program. P satisfies exactly one of the following
conditions:

• P has no answer sets,

• the only answer set for P is Lit,

• P has an answer set, and all its answer sets are consistent.

A program is consistent if the set of its consequences is consistent, and incon
sistent otherwise. The former corresponds to the first two cases listed in the
proposition, the latter to the third case.

We say that a set X of literals is supported by P if, for each literal Í € X,
there exists a rule I <— ai,.. ., a„, not 6 i , ..., not bm in P such that

1. {ai,. . . , a„} C X, and

2. {öl,..., 6 m} n X = 0.

Lemma 4.7 (Properties o f answer sets)
Let P be an extended logic program. The following properties hold:

• Any consistent answer set for P is supported by P.

• If X and Y are answer sets of P and X C Y then X = Y.

• Each element of a consistent answer set of P is a head literaíT̂ of P.

From the last property it follows immediately that every consequence of P is a
head literal of P whenever P is consistent. We would finally like to mention the
following theorem:

Theorem 4.8 (Head Consistency)
If the set of head literals of an extended program P is consistent then every
answer set of P is consistent.

head literal of a program P is the head of a rule of P (see also Principle 2.3 and
Definition 6.5).

42 4 ADDING EXPLICIT NEGATION

Note that a program satisfying the conditions of the last theorem can still be
inconsistent since it may have no answer set at all.

We would finally like to mention that extended logic programs under answer
set semantics can be reduced to general logic programs as follows: for any
predicate p occurring in a program P we introduce a new predicate symbol
p' of the same arity representing the explicit negation of p. We then replace
each occurrence of -ip in the program with p', thus obtaining the general logic
program P'. It can be proved that a consistent set of literals S is an answer
set of P iff the set S' is a stable model of P', where S' is obtained from S by
replacing ->p with p'.

4.3 W F S for E x ten d ed Logic P rogram s

We now show how the second major semantics for general logic programs, WFS,
can be extended to logic programs with explicit negation. For our purposes the
characterization of WFS given in Theorem 3.20 will be useful. WFS is based on
a particular three-valued model. To simplify our presentation in this section we
will restrict ourselves to the literals which are true in this three-valued model.
The literals which are false will be left implicit. They can be added in a canonical
way as follows: let T, the set of true literals, be defined as the least fixed point
of a monotone operator composed of two antimonotone operators opiop2 . Then
the literals which are false in the three-valued model are exactly those which are
not contained in op2 {T). Given this canonical extension to the full three-valued
model we can safely leave the false literals implicit from now on.

We will first present a formulation which can be found in various papers,
e.g. [BG94, Lif96]. We then slightly modify this formulation to obtain stronger
results. We finally discuss a further modification by Pereira and Alferes.

Like answer set semantics well-founded semantics for extended logic pro
grams can be based on the operator -yp. However, the operator is used in
a totally different way. Since jp is anti-monotone the operator Fp = (jp)^
is monotone. According to the famous Knaster-Tarski theorem [Tar55] every
monotone operator has a least fixpoint. We can thus define

Definition 4.9 (W FS for extended programs)
Let P be an extended logic program. The set of well-founded conclusions of P,
denoted WFS{P), is the least fixpoint o/Fp.

The fixpoint can be approached from below by iterating Fp on the empty set.
In case P is finite this iteration is guaranteed to actually reach the fixpoint.

The intuition behind this use of the operator is as follows: whenever jp is
applied to a set of literals X known to be true it produces the set of all literals
that are still potentially derivable. Applying it to such a set of potentially
derivable literals it produces a set of literals known to be true, often larger than
the origincd set X. Starting with the empty set and iterating until the fixpoint
is reached thus produces a set of true literals.

4.3 WFS for Extended Logic Programs 43

We first want to illustrate this using an example without explicit negation:

P : (1)
(2)
(3)
(4)

■ f -

<-
•f-

•f-

not a
not b
not d
not e

In the beginning we know nothing about derivable literals, i.e.,
empty set X. The X-reduct of the program is

we start with

(1) b
(2) c
(3) e
(4) d

The set of consequences of this program, or in other words, the literals still
considered to be potentially derivable, is thus {b,c,d,e}. If we now reduce the
program with this set we obtain

(1) b

that is, the first iteration of the two-fold application of -yp tells us that b is
provable.

If we now use X = {6 } to continue the iteration we obtain the reduced
program

(1) b
(3) e
(4) d

that is {b,d,e} is the current set of potential conclusions. Using this set to
reduce the program gives us again

(1) b

We thus have reached the least fixed point of jp and b is the single literal
provable under WFS. it turns out that no new literal

It can be shown that every well-founded conclusion is a conclusion under
the answer set semantics. Well-founded semantics can thus be viewed as an
approximation of answer set semantics.

Unfortunately it turns out that for many programs the set of well-founded
conclusions is extremely small and provides a very poor approximation of answer
set semantics. Consider the following program Pq which has also been discussed
by Baral and Gelfond [BG94]:

Po (1) b <- not -<b
(2) a i- not —<a
(3) “•a not a

44 4 ADDING EXPLICIT NEGATION

The set of well-founded conclusions is empty since jPg (0) equals Lit, the set of
all literals, and the Lii-reduct of Pq contains no rule at all. This is surprising
since, intuitively, the conflict between (2) and (3) has nothing to do with -it
and b.

This problem arises whenever the following conditions hold:

1 . a complementary pair of literals is provable from the monotonic counter
parts of the rules of a program P, and

2 . there is at least one proof for each of the complementary literals whose
rules are not defeated by Cn(P'), where P' consists of the “strict” rules
in P, i.e., those without negation as failure.

In this case well-founded semantics concludes / iff / G Cn{P'). It should be
obvious that such a situation is not just a rare limiting case. To the contrary, it
can be expected that many commonsense knowledge bases will give rise to such
undesired behaviour. Let us consider again our Example 2.11 from Section 2.

(1)
(2)

fly{x)
-^flyix)

not >fly{x), bird(x)
not fly{x),penguin{x)

Assume further that the knowledge base contains the information that Tweety
is a penguin bird. Now if neither flyiTweety) nor fly {Tweety) follows from
strict rules in the knowledge base we are in the same situation as with Pq: well-
founded semantics does not draw any “defeasible” conclusion, i.e. a conclusion
derived from a rule with default negation in the body, at all.

We want to show that a minor reformulation of the fixpoint operator can
overcome this weakness and leads to better results. Consider the following
operator

7 Í.(X) = Cl{P^)

where Cl{R) denotes the minimal set of literals closed under the (classical) rules
R. Cl{R) is thus like Cn{R) without the requirement of logical closedness. Now
define

r^(^) = i p { i p { x))

Again we iterate on the empty set to obtain the well-founded conclusions of a
program P which we will denote WFS*{P).

Consider the effects of this modification on our example Pq. 7 pg(0) =
{a, ->a, &}. Rule (1) is contained in the {a, -̂ a, b}-reduct of Pq and thus Tp̂ (0) =
{Ö}. Since 6 is also the only literal contained in all answer sets of Pq our ap
proximation actually coincides with answer set semantics in this case.

In the Tweety example both fly{Tweety) and ->fly{Tweety) are provable
from the 0-reduct of the knowledge base. However, this has no influence on
whether a rule not containing the default negation of one of these two literals
in the body is used to produce 7p(0) or not. The effect of the conflicting
information about Tweety’s flying ability is thus kept local ajid does not have

I

4.3 WFS for Extended Logic Programs 45

the disastrous consequences it has in the original formulation of well-founded
semantics.

It is not difficult to see that the new monotone operator is equivalent to the
original one whenever P does not contain negation as failure. In this caae the
X-reduct of P, for arbitrary X, is equivalent to P and for this reason it does
not make any difference whether to use jp or jp as the operator to be applied
first in the definition of Fp. The same is obviously true for programs without
classical negation; for such programs Cn can never produce complementary
pairs of literals and for this reason the logical closedness condition is obsolete.

In the general case the new operator produces more conclusions than the
original one;

Lemma 4.10 Let P be an extended logic program,
literals X we have

T p { X) C Fi,(X).

For an arbitrary set of

It can also be shown that the new operator produces no unwanted results,
i.e., that our new semantics can still be viewed as an approximation of answer
set semantics.

Lemma 4.11 Let P be an extended logic program. WFS*
STABLE, i.e., I € WFS*{P) implies I S STABLE{P).

is correct wrt.

An alternative, somewhat stronger approach, was developed by Pereira and
Alferes [PA92, AP95, AP96], the semantics WFSX. This semantics implements
the intuition that a literal with default negation should be derivable from the
corresponding explicitly negated literal. The authors call this the coherence
principle. To satisfy the principle they use the seminormal version of a program
P, denoted S{P), which is obtained from P by replacing each rule

c (,..., a,i, not b̂ ,..., not b„i

by the rule
c (, ..., â i, not b\,..., not bjj,, not c

where —c is the complement of c, i.e. -ic if c is an atom and a if c = ->a. Based
on this notion Pereira and Alferes consider the following monotone operator;

np{x) = j*pj*ŝ p̂ {x)

The use of the seminormal version of the program in the first application of
7 * guarantees that a literal I is not considered a potential conclusion whenever
the complementary literal is already known to be true. In the general case
S{P)^ contains fewer rules than P ^ . Therefore, fewer literals are considered as
potential conclusions and thus more conclusions are obtained in each iteration

46 4 ADDING EXPLICIT NEGATION

of the monotone operator. Here is an example [BG94]:

PwFSX : (1)
(2)
(3)

a •<—
b -i-
->a <—

not b
not a

The original version of WFS does not conclude b. In WFSX the set X = {-’a}
is obtained after the first iteration of the monotone operator. Since rule (1) is
not contained in the X-reduct of the seminormal version of the program the
monotonic counterpart of (2) produces b after the second iteration.

Although a number of researchers consider WFSX to be the more adequate
extension of well-founded semantics to extended logic programs the original
formulation is still very often found in the literature. For this reason we will
base our treatment of preferences in the next section on the earlier formulation
based on 7 *. However, we will briefly show how the coherence principle can be
added in a simple way.

For the next section a minor reformulation turns out to be convenient. In
stead of using the monotonic counterparts of undefeated rules we will work with
the original rules and extend the definitions of the two operators Cn and Cl ac
cordingly, requiring that default negated preconditions be neglected, i.e., for an
arbitrary set of rules P with default negation we define Cn{P) = Cn{Mon{P))
and Cl{P) = Cl{Mon{P)). We can now equivalently characterize jp and jp
by the equations

7 P(X) - Cn{Px)

7>(X) = CliPx)

where Px denotes the set of rules not defeated by X.
An alternative characterization of Fp will also turn out to be useful in the

next section. It is based on the following notion:

Definition 4.12 (X-SAFE)
Let P be a logic program, X a set of literals. A rule r is X-safe wrt. P
(r G SAFEx{P)) if r is not defeated by 7 p(X) or, equivalently, if r £ Pŷ (̂ x)-

With this new notion we can obviously characterize Fp as follows:

Fi,(X) = = Cn(P.,.(x)) = Cn{SAFEx{P))

It is this last formulation that we will modify. More precisely, the notion of
X-safeness will be weakened to handle preferences adequately.

47

5 Adding Preferences

In this section we describe an extension of well-founded semantics for logic pro
grams with two types of negation where information about preferences between
rules can be expressed in the logical language. Conflicts among rules are resolved
whenever possible on the basis of derived preference information. As it turns
out the well-founded conclusions of propositional prioritized logic programs can
be computed in polynomial time.

After giving some motivation in Section 5.1 we introduce our dynamic treat
ment of preferences together with several small motivating examples in Sec
tion 5.2. We show that our conclusions are, in general, a superset of the well-
founded conclusions. Subsection 5.3 illustrates the expressive power of our ap
proach using a more realistic example from legal reasoning.

5.1 M otiva tion

Preferences among defaults play a crucial role in nonmonotonic reasoning. One
source of preferences that has been studied intensively is specificity [Poo85,
Tou8 6 , TTH91] — we already discussed it in Example 2.11. In case of a con
flict between defaults we tend to prefer the more specific one since this default
provides more reliable information. E.g., if we know that students are adults,
adults are normally employed, students are normally not employed, we want to
conclude “Peter is not employed” from the information that Peter is a student,
thus preferring the student default over the conflicting adult default.

Specificity is an important source of preferences, but not the only one, and
at least in some applications not necessarily the most important one. In the
legal domain it may, for instance, be the case that a more general rule is pre
ferred since it represents federal law as opposed to state law [Pra93]. In these
cases preferences may be based on some basic principles regulating how conflicts
among rules are to be resolved.

Also in other application domains, like model based diagnosis or configura
tion, preferences play a fundamental role. Model based diagnosis uses logical
descriptions of the normal behaviour of components of a device together with
a logical description of the actually observed behaviour. One tries to assume
normal behaviour for as many components as possible. A diagnosis corresponds
to a set of components for which these normalcy assumptions lead to inconsis
tency. Very often a large number of possible diagnoses is obtained. In real life
some components are less reliable than others. To eliminate less plausible diag
noses one can give the normalcy assumptions for reliable components of higher
priority.

In configuration tasks it is often impossible to achieve all of the design goals.
Often one can distinguish more important goals from less important ones. To
construct the best possible configurations goals then have to be represented as
defaults with different preferences according to their desirability.

48 5 ADDING PREFERENCES

The relevance of preferences is well-recognized in nonmonotonic reasoning,
and prioritized versions for most of the nonmonotonic logics have been proposed,
e.g., prioritized circumscription [Lif85], hierarchic autoepistemic logic [Kon8 8],
prioritized default logic [Bre94]. In these approaches preferences are handled in
an “external” manner in the following sense: some ordering among defaults is
used to control the generation of the nonmonotonic conclusions. For instance, in
the case of prioritized default logic this information is used to control the gener
ation of extensions. However, the preference information itself is not expressed
in the logical language. This means that this kind of information has to be
fully pre-specified, there is no way of reasoning about (as opposed to reasoning
with) preferences. This is in strong contrast to the way people reason and argue
with each other. In legal argumentation, for instance, preferences are context-
dependent, and the assessment of the preferences among involved conflicting
laws is a crucial (if not the most crucial) part of the reasoning. What we would
like to have, therefore, is an approach that allows us to represent preference
information in the language and derive such information dynamically.

5.2 H an d lin g P references

In order to handle preferences we need to be able to express preference infor
mation explicitly. Since we want to do this in the logical language we have to
extend the language. We do this in two respects:

1. we use a set of rule names N together with a naming function name to
be able to refer to particular rules,

2 . we use a special (inflx) symbol ^ that can take rule names as arguments
to represent preferences among rules.

Intuitively, n\ -< ri2 where ni and n2 are rule names means the rule with name
ni is preferred over the rule with name

Definition 5.1 (Prioritized Program)
A prioritized logic program is a pair (R,name) where R is a set of rules and
name a naming function. To make sure that the symbol -< has its intended
meaning, i.e., represents a transitive and anti-symmetric relation, we assume
that R contains all ground instances of the schemata

NI X Ns t— NI -< Ns, Ns -< Ns

and
^{Ns ■< Ni) ^ N i - ^ N s

where Ni are parameters for names. Note that in our examples we won’t mention
these rules explicitly.

*®Note that for historical reasons we follow the convention that the minimal rules are the
preferred ones.

5.2 Handling Preferences 49

The function name is a partial injective naming function that assigns a name
n € iV to some of the rules in R. Note that not all rules do necessarily have a
name. The reason is that names will only play a role in conflict resolution among
defeasible rules, i.e., rules with weakly negated preconditions. For this reason
names for strict rules, i.e., rules in which the symbol not does not appear, won’t
be needed. A technical advantage of leaving some rules unnamed is that the
use of rule schemata with parameters for rule names does not necessarily make
programs infinite. If we would require names for all rules we would have to use
a parameterized name for each schema and thus end up with an infinite set N
of names.

In our examples we assume that N is given implicitly. We also define the
function name implicitly. We write;

TTj . c ̂ a.\,..., 0 ,1 , not b\ ,..., not

to express that name(c Ű1 , ..., a„, not bi,...,not bm) — ni.
For convenience we will simply speak of programs instead of prioritized logic

programs whenever this does not lead to misunderstandings.
Before introducing our new definitions we would like to point out how we

want the new explicit preference information to be used. Our approach follows
two principles:

1. We want to extend well-founded semantics, i.e. we want that every WFS*-
conclusion remains a conclusion in the prioritized approach.

2. We want to use preferences to solve conflicts whenever this is possible
without violating principle 1.

Let us first explain what we mean by conflict here. Rules may be conflicting
in several ways. In the simplest case two rules may have complementary literals
in their heads. We call this a type-I conflict.

Definition 5.2 (Type-I Conflict)
Let vi and V2 be two rules. We say r\ and r2 are type-I conflicting iff the head
of ri is the complement of the head of T2 ■

Conflicts of this type may render the set of well-founded conclusions inconsistent,
but do not necessarily do so. If, for instance, a precondition of one of the rules
is not derivable or a rule is defeated the conflict is implicitly resolved. In that
case the preference information will simply be neglected. Consider the following
program P\:

ni ; 6 •(— not c
n2 '■ ~'b ^ not b
Ti3 ; ri2 -< Hi

50 5 ADDING PREFERENCES

There is a type-I conflict between ni and n2 - Although the explicit preference
information gives precedence to ri2 we want to apply ni here to comply with the
first of our two principles. Technically, this means that we can apply a preferred
rule r only if we are sure that r ’s application actually leads to a situation where
literals defeating r can no longer be derived.

The following two rules exhibit a different type of conflict:

a •<— not b
b ^ not a

The heads of these rules are not complementary. However, the application of
one rule defeats the other and vice versa. We call this a direct type-II conflict.
Of course, in the general case the defeat of the conflicting rule may be indirect,
i.e. based on the existence of additional rules.

We say ri and V2 are type-II conflicting
Definition 5.3 (Type-II Conflict)
Let r\ and V2 be rules, R a set of rules,
wrt. R iff

1. Cl{R) neither defeats ri norr2 ,

2. Cl{R-\-ri) defeats r2 , and

3. Cl{R + r2) defeats rI

Here R + r abbreviates iiU{r}. A direct type-II conflict is thus a type-II conflict
wrt. the empty set of rules. The rule sets R that have to be taken into account
in our well-founded semantics based approach are subsets of the rules which are
undefeated by the set of literals known to be true. Note that the two types of
conflict are not disjoint, i.e. two rules may be in conflict of both type-I and
type-II. Consider the following program P2 , a slight modification of Pi:

ni : 6 •<— not c, not -̂ b
n.2 : -i5 ■<— not b
nz :U2 < ni

Now we have a type-II conflict between ni and ri2 (more precisely, a direct
type-II and a type-I conflict) that is not solvable by the implicit mechanisms of
well-founded semantics alone. It is this kind of conflict that we try to solve by
the explicit preference information. In our example ri2 will be used to derive
-<b. Note that now the application of U2 defeats ni and there is no danger that
a literal defeating U2 might become derivable later. Generally, a type-II conflict
between ri and T2 (wrt. some undefeated rules of the program) will be solved
in favour of the preferred rule, say ri, only if applying ri excludes any further
possibility of deriving an ri-defeating literal.

Note that every type-I conflict can be turned into a direct type-II conflict
by a (non-equivalent!) rerepresentation of the rules: if each conflicting rule r

5.2 Handling Preferences 51

is replaced by its seminormal form} ̂ then all conflicts become type-II conflicts
and are thus amenable to conflict resolution through preference information.

After this motivating discussion let us present the new definitions. Our
treatment of priorities is based on a weakening of the notion of AT-safeness
(Definition 4.12). In Sect. 2 we considered a rule r as X-safe whenever there
is no proof for a literal defeating r from the monotonic counterparts of X-
undefeated rules. Now in the context of a prioritized logic program we will
consider a rule r as X-safe if there is no such proof from monotonic counterparts
of a certain subset of the X-undefeated rules. The subset to be used depends on
the rule r and consists of those rules that are not “dominated” by r. Intuitively,
r' is dominated by r iff r' is

1 . known to be less preferred than r and

2 . defeated when r is applied together with rules that already have been
established to be X-safe.

(2) is necessary to make sure that explicit preference information is used the
right way, according to our discussion of Pi.

It is obvious that whenever there is no proof for a defeating literal from all
X-undefeated rules there can be no such proof from a subset of these rules.
Rules that were X-safe according to our earlier definition thus remain to be
X-safe. Here are the precise definitions:

Definition 5.4 (Dominated Rules)
Let P = (P, name) be a prioritized logic program, X a set of literals, Y a set
of rules, and r € R. The set of rules dominated by r wrt. X and Y, denoted
Domxyip), is the set

{r' € P I name{r) -< name{r') € X and Cl(Y + r) defeats r'}

Note that Domx,Y{r) is monotonic in both X and Y. We can now define the
X-safe rules inductively:

Definition 5.5 {SAFE^{P))
Let P = (P, name) be a prioritized logic program, X a set of literals. The set of
X-safe rules of P, denoted SAFE^{P), is defined as follows: SAFE^{P) =
U~o^>> where

Po = 0, and for i > 0,
Ri = {r £ R \ r not defeated by Cl{Rx \ Domx,Ri_^{r))}

As discussed in Section 4 the seminormal form of c <— ai, . . . , an, not bi,. .., not bm is

c <—ai, ..., On, not bi,...,not bm,not d

where c' is the complement of c. The term seminormal is taken from Reiter [ReiSO].

52 5 ADDING PREFERENCES

Note that X-safeness is obviously monotonic in X. Based on this notion we
introduce a new monotonic operator Fp :

Definition 5.6 (WFSi”-)
Let P = {R,name) be a prioritized logic program, X a set of literals. The
operator is defined as follows:

r^;{X) = Cn{SAFE^{P))

As before we define the (prioritized) well-founded conclusions of P, denoted
WFS’̂’' (P), as the least fixpoint of F̂ T. If a program does not contain preference
information at all, i.e., if the symbol -< does not appear in R, the new semantics
coincides with WFS* * since in that case no rule can dominate another rule. In
the general case, since the new definition of X-safeness is weaker than the one
used earlier we may have more X-safe rules and for this reason obtain more
conclusions than via Fp. The following result is thus obvious:

Lemma 5.7 Let P = {R,name) be a prioritized logic program. For every set
of literals X we have Fp(X) C Fp (̂X).

^From this and the monotonicity of both operators it follows immediately that
I e WFS*{R) implies I e WFS”̂ {P).^^

As a first simple example let us consider the following program P3 :

ni : 5 t- not c
ri2 : c <— not b
ns : ri2 -< n\

We first apply Fp̂ to the empty set. Besides the instances of the transitivity
and anti-symmetry schema that we implicitly assume only ns is in SAFE^'’{Pz).
We thus obtain

S\ = {n2 ni,-i(ni ^ 7 1 2)}

We next apply Fp̂ to Si. Since TI2 X ni € Si we have ni G Doms^ îninz).
n2 G SAFEg'^iPz) since Cl{Pzĝ \ {ni}) does not defeat ri2 and we obtain

S2 = {n2 X ui, -n(m -(7 1 2), c}

Further iteration of Fp̂ yields no new literals, i.e. S2 is the least fixpoint. Note
that c is not a conclusion under the original well-founded semantics.

We next show that the programs Pi and P2 discussed earlier are handled as
intended. Here is Pi:

model the coherence principle of Pereira and Alferes [PA92] in our approach one would
have to weaken the notion of X-safeness even further. In the inductive definition, a rule r
would have to be considered a member of Ri whenever for each weak precondition not b of r

• b ^ C l l R x \ D o m x , R i _ i { r)) , o r

• 6' G X, where b' = ->6 if 6 is an atom and a if fc = â.

5.2 Handling Preferences 53

Til : b i— not c
Ti2 '■ -<b <— not b
ri3 :712 X ni

Since 7 p (0) does not defeat rii this rule is safe from the beginning, i.e., n\ G
SAFEf(Pi). rP’-(0) yields

{ti2 ^ n i , - . (n i X 712), &}

which is also the least fixpoint. The explicit preference does not interfere with
the implicit one, as intended.

The situation changes in P̂ where the first rule in Pi is replaced by

Til : 5 t— not c, not ^b

The new rule tii is not in SAFE^^{P2) since it is defeated by the consequence
of 712 and 712 is not dominated by tii. Tp̂ (0) yields

Si = {t12 ^ 71i ,-.(t1i -< 7 1 2)}

Now 712 G SAFE^^{P2) since 712 dominates 711 wrt. Si and the empty set of
rules. We thus conclude -̂ b as intended. The least fixpoint is

S2 = {712 7 i i , - ' (7 i i 7 i 2) , 6 }

It also applies to well-founded semantics for extended logic programs since
for the computation of the least fixed point of Tp respectively Tp the comple
mentary literals I and ->/ can be viewed as two distinct atoms.

For the complexity analysis of our prioritized approach let n be the number
of rules in a prioritized program P = {R,name). A straightforward implemen
tation would model the application of Fp in an outer loop and the computation
of SAFE^ in an inner loop. Fortunately, we can combine the two loops into a
single loop whose body is executed at most n times. The reason is that SAFE^
grows monotonically with X and Fp" grows monotonically with SAFE^. Here
is a nondeterministic algorithm for computing the least fixed point of Fp̂ :

Procedure WFSP''
Input: A prioritized logic program P = {R,name) with |i?| = n
Output: the least fixed point of Fp̂
■So := 0;
Rc :=0;
for i = 1 to 77 do

if there is a rule r € Rsi-i \ Ri-i such that
Cl{Rsi.i \ DomSi_i,Ri_i{r)) does not defeat r
then Ri Ri-i -I- r;5j := Cn{Ri)
else return S{-i

54 5 ADDING PREFERENCES

endfor
end WFSP’’

In each step Si and Ri denote the well-founded conclusions, respectively safe
rules established so far. The body of the for-loop is executed at most n times
and there are at most n rules that have to be checked for satisfaction of the
if-condition. The if-condition itself can, according to the results of Dowling and
Gallier, be checked in linear time: we need to establish Domsi_i,Ri_i{r) which
involves the computation of a minimal model of the monotonic counterparts of

+ r. We then have to eliminate the rules dominated by r form and
compute another minimal model to see whether r is defeated. This leads to an
overall time complexity of O(n)̂.

5.3 A Legal R eason in g E xam ple

In this section we want to show that the additional expressiveness provided by
our approach actually helps representing real world problems. We will use an
example first discussed by Gordon [Gor93]. We somewhat simplified it for our
purposes.

Example 5.8 (Legal Reasoning)
Assume a person wants to find out if her security interest in a certain ship is
perfected. She currently has possession of the ship. According to the Uniform
Commercial Code (UCC, ^9-305) a security interest in goods may be perfected
by taking possession of the collateral. However, there is a federal law called the
Ship Mortgage Act (SMA) according to which a security interest in a ship may
only be perfected by filing a financing statement. Such a statement has not been
filed. Now the question is whether the UCC or the SMA takes precedence in this
case. There are two known legal principles for resolving conflicts of this kind.
The principle of Lex Posterior gives precedence to newer laws. In our case the
UCC is newer than the SMA. On the other hand, the principle of Lex Superior
gives precedence to laws supported by the higher authority. In our case the SMA
has higher authority since it is federal law.

The available information can nicely be represented in our approach. To make
the example somewhat shorter we use the notation

c N— a\ , ..., Ofi, not b\ ,..., not

as an abbreviation for the rule

c <—ai,... ,ün,not b\,...,not bTn,not d

where c' is the complement of c, i.e. -ic if c is an atom and a if c = ->a. Such
rules thus correspond to semi-normal or, if m = 0, normal defaults in Reiter’s
default logic [ReiSO].

5.3 A Leged Reasoning Example 55

We use the ground instcinces of the following named rules to represent the
relevant article of the UCC, the SMA, Lex Posterior (LP), and Lex Superior
(LS). The symbols di and d. 2 are parameters for rule names:

UCC : perfected <= possession
SMA : -^perfected ship,-'/in-statement
LP{d\,d2) : di -< d2 <= more-recent{d\,d2)
LS{d\,d2) : di d2 <= f ed-law{d{), state-law{d2)

The following facts are known about the case and are represented as rules with
out body (and without name):

possession
ship
-•fin-statement
more-recent{UCC, SMA)
fed-law(SMA)
state-law{UCC)

Let’s call the above set of literals H. Iterated application of Pp yields the
following sequence of literal sets (in each case Si = (Pp)‘(0)):

51 =
52 =

H
Si

The iteration produces no new results besides the facts already contained in
the program. The reason is that UCC and SMA block each other, and that
no preference information is produced since also the relevant instances of Lex
Posterior and Lex Superior block each other. The situation changes if we add
information telling us how conflicts between the latter two are to be resolved.
Assume we add the following information:̂ ®

LS{SMA,UCC) -< LP{UCC,SMA)

Now we obtain the following sequence:

{LS{SMA,UCC) -< LP{UCC,SMA),
-^LP{UCC,SMA) -< LS{SMA,UCC)]

{SMA -< UCC,--UCC -< SMA}
{-•perfected]

5i = H U

52 = Si U
5s = 52 u
54 = 5s

This example nicely illustrates how in our approach conflict resolution strategies
cm be specified declaratively, by simply asserting relevant preferences among
the involved conflicting rules.

*®In realistic settings one would again use a schema here. In order to keep the example
simple we use the relevant instance of the schema directly.

56 6 ADDING DISJUNCTION

6 Adding Disjunction

In this section we will extend our programs to disjunctive statements. In Knowl
edge Representation it often occurs that we know AVBVC without being sure
which of these propositions hold. In fact, such a disjunction leaves it open;
there might be states in the world where A holds or 5 or C or any combination
thereof. Nevertheless, we can have information that A implies D and B implies
D and C implies D from which we would like to derive that D holds for sure. We
will see in Section 6.5 that even with disjunctive programs without negation we
can already express relations which belong to the second level of the polynomial
hierarchy.

Concerning the right semantics for such programs, we are in the same situ
ation as in Section 3 — for positive programs there is general agreement while
for disjunctive programs with default-negation there exist several competing
approaches.

We present in Section 6.1 the generalized closed world assumption intro
duced by Minker. In Section 6.2 we show that our definition of WFS from
Section 3.3 immediately carries over to the disjunctive case. The original defini
tion of STABLE (Definition 3.16) also carries over — we present it in Section 6.3.
We mention some other attempts to define disjunctive semantics in Section 6.4.
Finally we discuss complexity and expressibility in Section 6.5.

6.1 G C W A

GCWA was defined by Minker ([Min82]) and can bee seen as a refined version
of the CWA introduced by Reiter ([Rei78]):
Definition 6.1 (CWA)

CWA(DB) = DB U {-nP(i) : DB ^ P(i)} ,

where P{t) is a ground predicate instance.

That is, if a ground term cannot be inferred from the database, its negation
is added to the closure. A weakness of CWA is that already for very simple
theories, like A V P it is inconsistent. Since neither -lA nor ->B is derivable, we
have to add them both which makes the whole set inconsistent.

GCWA is defined for positive disjunctive programs consisting of rules of the
form

Ai V ... V An <— P i ,..., Pm
by declaring all the minimal models to be the intended ones:

Definition 6.2 (GCWA)
The generalized closed world assumption GCWA of P is the semantics given by
the set of all minimal Herbrand models of P:

GCWA{P) := Min-MOD{P)

6.1 GCWA 57

Originally, Minker denoted by GCWA(P) a set of negative atoms with the prop
erty that P U GCWA{P) |= not A if and only if MinMOD(P)|= not A but we
prefer here to denote by GCWA a semantics in the sense of Definition 2.13.

GCWA is very important because it plays the same role for positive disjunc
tive programs as the least Herbrand model Mp does for definite programs. In
addition it turns out that some semantics SEM defined for arbitrary disjunctive
programs (i. e. with default-negation) can be characterized, sometimes even im
plemented, by reducing them to positive programs and then applying recursively
GCWA. Thus an appropriate procedure iterating GCWA can “implement” such
semantics SEM.

Note also that as far as we consider deriving positive disjunctions, we stay
entirely within classical logic — a positive disjunction is true in GCWA if and
only if it follows from the program considered as a classical theory. Therefore
this task can be accomplished be methods and techniques developed in theorem
proving in the last 30 years. In fact this was one of the main starting points
of the DisLoP-project in Koblenz (see Section 7.2). As an example, in [BFS95]
the authors show how to compute definite answers from a positive disjunctive
program using an underlying theorem prover. While indefinite answers are easy
to obtain (because most of them are trivial) definite ones are much harder to
obtain.

Of course, GCWA is nothing else than Circumscription (see Section A.4) for
a special class of theories. Methods developed for CIRC can be used to com
pute GCWA. For recent approaches that work in polynomial space see [Nie96a,
Nie96b].

In Sections 2 and 3 we have introduced the general notion of a semantics
and various principles. Do they carry over to the disjunctive case? Fortunately,
the answer is yes. In addition, GCWA not only satisfies all these properties,
it is also uniquely characterized by them as the next theorem shows (we will
introduce these properties in the next section).

Theorem 6.3 (Characterization of GCWA)
Let SEM be a semantics satisfying GPPE and Elimination of Tautologies.

a) Then: SEM{P) C Min-MOD2 -vai{P) for positive disj. programs P.
I.e. any such semantics is already based on 2-valued minimal models. In
particular, GCWA is the weakest semantics with these properties.

b) If SEM is non-trivial and satisfies in addition̂ ̂ Isomorphy and Relevance,
then it coincides with GCWA on positive disjunctive programs.

We end this section with the discussion of a well-known example that can
not be handled adequately by Circumscription:

’̂’See Section 7.1 for the precise definitions of Relevance and Isomorphy.

58 6 ADDING DISJUNCTION

Example 6.4 (Poole’s Broken Arm)
Usually, a person’s left arm is useable. But if the left arm is broken, it is an
exception. The same statement holds for the right arm. Suppose that we saw
Fred yesterday with a broken arm but we do not remember if it was the left or
the right one. We also know that Fred can make out a cheque if he has at least
one useable arm (he is ambidextrous) but that he is completely disabled if both
arms are broken. Here is the natural formalization:

left-use(x)
ab{left,x)
right.use{x)
ab{right, x)
leftJbrok{Fred) V right J>rok{Fred)
make..cheque{x)
make-cheque{x)
disabled{x)

not ab{left,x)
leftJbrok(x)
not ab(right, x)
rightJbrok{x)

f-
leftjuse{x)
right.useix)
le f t Jbrok{x),right Jyrok{x)

Of course, we expect that Fred is able to make out a cheque even without knowing
which arm he is actually using. Also we derive that he is not (completely)
disabled.

For general Circumscription, the problem is to rule out the unintended model
where both arms are broken and Fred is disabled. As we will see later, both
D-WFS and DSTABLE derive that Fred is not disabled but only DSTABLE is
strong enough to also conclude that Fred can make out a cheque.

6.2 D -W F S

Before we can state the definition of D-WFS we have to extend our principles
to disjunctive programs with default-negation. We abbreviate general rules

Ai V . . . V A* <- Bi,.. .,Bm, not Cl, . . . , not Cn,

by
A <— B'*', not B

where A := {Ai,..., A*}, B+ := {B i,... ,Bm}, B~ := {Ci,...,Cn}. We also
generalize our notion of a semantics slightly:

Definition 6.5 (Operator |~, Semantics
By a semantic operator |~ we mean a binary relation between logic programs and
pure disjunctions which satisfies the following three arguably obvious conditions:

1. Right Weakening: If P rp and tp Q i p ' , then P ip'.

2. Necessarily True: If Air- true € P for a disjunction A, then P |~ A.

®̂I. e. i/> is a subdisjunction of ip'.

1

6.2 D-WFS 59

3. Necessarily False: If A ^ Headjatoms{PY^ for some C-ground atom A,
then P not A.

Given such an operator 1~ and a logic program P, by the semantics S^{P) of P
determined by we mean the set of all pure disjunctions derivable by from
P,i.e., S^{P) ~ {V'lPhV'}-

In order to give a unified treatment in the sequel, we introduce the following
notion:

Definition 6.6 (Invariance of |~ under a Transformation)
Suppose that a program transformation Trans : P h->- Trans(P) mapping logic
programs into logic programs is given. We say that the operator |~ is invariant
under Trans (or that Trans is a -equivalence transformation) iff

P |~ V' Trans(P) |~ ip

for any pure disjunction ip and any program P.

All our principles introduced below can now be naturally extended.

Definition 6.7 (Elimination of Tautologies, Non-Minimal Rules)
Semantics satisfies a) the Elimination of Tautologies, resp. b) the Elimi
nation of Non-Minimal Rules iff |~ is invariant under the following transforma
tions:

a) Delete a rule A A not B~ with A D 0.

b) Delete a rule A i- B^ A not B~ if there is another rule
A' •(- B+' A not B-' with A' C A, B+' C B+, and B~' C B~.

Our partial evaluation principle has now to take into account disjunctive heads.
The following definition was introduced independently by Sakama/Seki and
Brass/Dix ([BD95d, SS95]):

Definition 6.8 (GPPE)
Semantics iSj...., satisfies GPPE iff it is invariant under the following transfor
mation: Replace a rule A B~̂ A not B~ where B' ̂ contains a distinguished
atom B by the rules

.4U(A\{S}) t- (B+\{P}) UB+ A noi (P-Ufí-) (i = l, .. .,n)

where Ai <r- B^ A not B~ (i = 1,... ,n) are all the rules with B e A{.

'®We denote by Head.atoms{P) the set of all (instantiations of) atoms ocurring in some
rule-head of P.

60 6 ADDING DISJUNCTION

Note that we are free to select a specific positive occurrence of an atom B
and then perform the transformation. The new rules are obtained by replacing
B by the bodies of all rules r with head literal B and adding the remaining head
atoms of r to the head of the new rule.

Here is the analogue of Principle 3.6:

Definition 6.9 (Positive and Negative Reduction)
Semantics »S|.̂ satisfies a) Positive, resp. b) Negative Reduction iff |~ is invari
ant under the following transformations:

a) Replace a rule A •(- S+Anot B~ by A i— S+Anot {B~OHead-atoms{P)).

b) Delete a rule A B' '̂Anot B~ if there is a rule A' true with A' C B~.

Now the definition of a disjunctive counterpart of WPS is straightforward:

Definition 6.10 (D-WFS)
There exists the weakest semantics satisfying positive and negative Reduction,
GPPE, Elimination of Tautologies and non-minimal Rules. We call this seman
tics D-WFS.

As it was the case for WPS, our calculus of transformations is also confluent
([BD95C, BD96]).

Theorem 6.11 (Confluent Calculus for D-WFS)
The calculus consisting of our four transformations is confluent and terminating
for propositional programs. I.e. we always arrive at an irreducible program,
which is uniquely determined. The order of the transformations does not matter.

Therefore any program P is associated a unique normalform res{P). The
disjunctive wellfounded semantics of P can be read off from res{P) as follows

rP 6 D-WFS(P) there is A Cxp with A true £ res(P) or
there is not A £ rp and A ^ Head^toms{res{P)).

Note that the origineJ definition of WPS, or any of its equivalent characteriza
tions, does not carry over to disjunctive programs in a natural way.

Let us see how Example 6.4 is handled by D-WFS. Applying GPPE and
Reduction gives us the following residual program (we consider just the Fred-
instantiations):

leftjuse(F) f- not ab{left, F)
ab{left, F) V right Jyrok{F) £-
right juse{F) £- not ab{right, F)
ab{right, F) V leftJorok{F) £-
leftJbrok(F) V rightJbrok{F) •f-
make-cheque(F) ■<- not ab{left, F)
makejcheque{F) •£- not ab{right, F)

6.3 DSTABLE 61

Therefore we derive not disabled{F), because it does not appear in any head of
the residual program. All the remaining atoms are undefined.

Two properties of D-WFS are worth noticing

• For positive disjunctive programs, D-WFS coincides with GCWA.

• For non-disjunctive programs with negation, D-WFS coincides with WFS.

6.3 D ST A B L E

Unlike the wellfounded semantics, the original definition of stable models carries
over to disjunctive programs quite easily:

Definition 6.12 (DSTABLE)
N is called a stable modeP ̂ of P iff N E Min-Mod(P^).

In the last definition P^ is the positive disjunctive program obtained from P
by applying the Gelfond/Lifschitz transformation (as introduced before Defini
tion 3.16 — its generalization to disjunctive programs is obvious).

Analogously to D-WFS the following two properties of DSTABLE hold:

• For positive disjunctive programs, DSTABLE coincides with GCWA.

• For non-disjunctive programs with negation, DSTABLE coincides with
STABLE.

What about our transformations introduced to define D-WFS? Do they hold
for DSTABLE? Yes, they are indeed true. The most difficult proof is the one
for GPPE. It was proved in [BD95d, SS95] independently that stable models are
preserved under GPPE. Moreover, Brass/Dix proved in [BD95b] that STABLE
can be almost uniquely determined by GPPE:

Theorem 6.13 (Characterization of DSTABLE)
Let SEM be a semantics satisfying GPPE, Elimination of Tautologies, and Elim
ination of Contradictions. Then: SEM{P) C STABLE{P).

Moreover, DSTABLE is the weakest semantics satisfying these properties.

DSTABLE is stronger than D-WFS as can be seen from Example 6.4. There
we have exactly two stable models

1. leftMse(F), not ab{left, F), ab(right, F), not rightjuse(F), leftJbrok{F),
not right Jbrok{F), make.cheque{F), and not disabled{F),

2. rightjuse(F), not ab[right,F), ab{left,F), not leftjuse{F), rightJrrok{F),
not leftJbrok{F), makejcheque{F), and not disabled(F).

In all of them, Fred is not disabled and can make out a cheque.
Of course, DSTABLE inherits the shortcomings of STABLE such as incon

sistency and no goal-orientedness.
°̂Note that we only consider Herbrand models.

fi.'

. f
#

62 6 ADDING DISJUNCTION

6.4 O ther Sem an tics

In this section we just want to mention some other disjunctive semantics pro
posed in the last years. First, there are semantics differing from GCWA in that
they interpret “V” inclusively, rather than exclusively (like GCWA does).

The corresponding semantics is called WGCWA (see [RLM89]) and is equiv
alent to the disjunctive database rule DDR considered in [RT88]. WGCWA
has been considered as a more tractable (weaker) variant of GCWA (from the
procedural point of view developed in [RLM89]).

Example 6.14 (Inclusive versus Exclusive)

inclfexcl a V 6
c —̂ Uj b

Under an exclusive interpretation, not c should be derivable. Indeed, we have
G C W A (P i „ c i / e z c i) = {not c}.
Under an inclusive interpretation however, not c should not be derivable. This
is the case for WGCWA: Mp. ̂ = {a, &,c}. The set o/positive derivable
literals is in both cases the same! If we replace the first clause with a or b, then
not c is derivable.

There are extensions of WGCWA to disjunctive programs with negation; [SI93,
Ros89, Dix92b, DM94a, Sak89].

There is also the book [LMR92] — the first in-depth-study of disjunctive se
mantics with negation. However, we feel that these semantics have a drawback in
that they are based on rather technical, complicated and not-easy-to-understand
fixpoint definitions. These definitions leave a lot of room for modifications. But
small modifications usually have a tremendous impact on the outcoming se
mantics. In addition these semantics do not allow for a proper treatment of
definitional extensions (see Example 7.4).

Other approaches are due to Przymusinski; síaííonary-semantics STAÍ de
fined in [Prz91a] and sioh’c-semantics STATIC defined in [Prz95, BDP96]. STATIC
is an improvement of his former stationary semantics that is very close to D-
WFS: in fact it coincides with D-WFS if it is restricted to a common sublan
guage ([BDNP96]). This approach also allows us to consider a larger class of
programs, namely those that contain not (Aj A ... A A„) in their bodies. Such
programs are more expressible and therefore turn out to be even better suited
for representation tasks.

Another approach differing from GCWA and WGCWA is considered in
[DGM94, DGM96, Bon93].

r

6.5 Complexity and Express!bility 63

Con
1. ord. prog.

(with functions)

iplexity
prop. prog,

(no variables)
GCWA

(P is positive)
A: S°-compl.

not A: Ilj-compl.
A: co-NP-compl.

not A: n^-compl.
WGCWA

(P is positive)
A: S°-compl.

not A: n°-compl.
A: co-NP-compl.

not A: linear in |P|
PERFECT

(P is stratified)
arithm.-compl. II2 -compl.

WPERFECT
(P is stratified)

arithm.-compl. n^-compl.

D STABLE nj-compl. over IN IIj-compl.

Table 4; Complexity of Disjunctive Semantics

6.5 C om p lex ity and E xp ressib ility

From the complexity point of view GCWA lies between CWA (which is II°-
complete, see [AB90] and general Circumscription (Sj-complete, see [CEG92]);
GCWA is n^-complete. For propositional programs we have to distinguish be
tween deriving an atom or a literal. The first problem is co-NP-complete while
the second is even Il^-complete (see [Imi91]).

For deriving negated literals not A, WGCWA is ll°-complete (like CWA)
and therefore “better” than GCWA (Il -̂complete). In the propositional case,
WGCWA is polynomial while GCWA is n^-complete (both for the derivation
of literals of the form not A).

64 6 ADDING DISJUNCTION

Expressibility
1. ord. prog,

(no functions)
GCWA

(P is positive)
c n ^

WGCWA
(P is positive)

c n p

PERFECT
(P is stratified)

= n r

WPERFECT
(P is stratified)

= nP

DSTABLE = n^

Table 5: Expressibility of Disjunctive Semantics

r

65

7 What Do We Want and What Is Implemented?
In this part we first consider the question Is there an optimal semantics? (Sec
tion 7.1) and give in Section 7.2 an overview of all the existing implementations
we are aware of. We also describe theoretical approaches that have not yet been
implemented.

7.1 W h a t is th e B est Sem antics?

Most probably there is no definite answer to the question in the title. Different
knowledge representation tasks may ask for different semantics. Some might be
better suited in special domains than others. What are reasonable properties
that semantics should be checked against?

While many people defined in the last years new semantics by considering
only few examples and appealing to their own personal intuitions they had about
how these few examples should be handled, Dix tried to adjust and investigate
abstract properties known in general nonmonotonic reasoning to semantics of
logic programs ([Dix91, Dix92b, Dix95a, Dix95b]). He showed for example that
WFS is cumulative and rational and that a semantics defined independently by
Schlipf and Dix is the weakest extension of WFS satisfying Cut and Supraclas-
sicality. Figure 3 illustrates the properties and the relationship between many
semantics. In Figure 4 normal programs are considered.

Besides such properties (which he calls strong) he defined also weak prop
erties — these are conditions that any reasonable semantics should satisfy
([Dix92a, Dix95b]). The principles we have introduced in Sections 2, 3 be
long to this sort. Let us take a closer look into some weak properties already
mentioned (but not yet defined). We start with a property that is satisfied for
any semantics we know:

Definition 7.1 (Isomorphy)
A semantics SEM satisfies Isomorphy, iff

SEM{I{P)) = I{SEM{P))

for all programs P and isomorphisms X on the Herbrand base Bp.

Isomorphy formalizes the intuition that a renaming of the program should have
no influence on the semantics, as long as we also apply this same renaming to
the semantics.

The next property gives a formal definition of the notion Goal-Orientedness.
To state this conditions, we need the notion of the Dependency-Graph (Defini
tion 3.5) and the two definitions

• dependencies^f (X) {A : X depends on ^}, and

• reLrul{P,X) is the set of relevant rules of P with respect to X, i.e. the
set of rules that contain an A G dependencies.of{X) in their head.

66 7 WHAT DO WE WANT AND WHAT IS IMPLEMENTED?

cumulative CZ ̂ - cumulative and rational □ 5 GPPE

GWFS, GDWFS, WF^

DSTABLE , STABLE

STN

PPE does not hold

Relevance does not hold

Modularity does not hold

Figure 3: Semantics for Disjunctive Programs

Given any semantics SEM and a program P, it is perfectly reasonable that
the truthvalue of a literal L, with respect to SEM(P), only depends on the
subprogram formed from the relevant rules of P with respect to This idea
is formalized by:

Definition 7.2 (Relevance)
The principle of Relevance states: L € SEM{P) iff L £ SEM{rel-rul{P,L)).

Note that the set of relevant rules of a program P with respect to a literal L con
tains all rules, that could ever contribute to L’s derivation (or to its nonderivabil-
ity). In general, L depends on a large set of atoms: dependencies-of{L) := {A :
L depends on A}. But rules that do not contain these atoms in their heads.

*̂Let dependencies{not X) := dependenciesjof {X), and reljrul{P,not X)
TeljTul{P,X).

7.1 What is the Best Semantics? 67

o . cumulative and rational □ = GPPE

Figure 4: Semantics for Normal Programs

will never contribute to their derivation or non-derivation. Therefore, these
rules should not affect the meaning of L in P. STABLE does not satisfy this
principle. This is due to the nonexistence of stable models by adding a clause
“c i- not c” to a program.

We have already introduced GPPE above. It is an extension of the following
property for non-disjunctive programs;

Definition 7.3 (PPE)
Let P be an instantiated program and let the atom c occur positively in P. Let
c rhsi, ... , c <— rhsn be all the rules of P with c in their heads.

Any program clause of the form “head <- c, body ” can be replaced by the
rules

head <— rhsi, body

head rhSn,body

Note that the rules c <— rhsi, ... c r/is„ are not removed (in contrast to the
weak version of PPE). We call the program obtained in this way P'.

The principle of partial evaluation is: SEM(P') = SEM(P).

68 7 WHAT DO WE WANT AND WHAT IS IMPLEMENTED?

GPPE is obtained from PPE by weakening the assumption that c only occurs
positively. We note that most semantics defined by Minker and his group do
not satisfy this condition:

Example 7.4 (Extension-by-Definition)
We consider the following two programs:

Pg w fs '■ p ■<- not b Pgwfsc '- P <- not b
a <r- not b a ■f- not b
b 4- c b -f- p, not a
c ■f- p, not a

GWFS(Pgwfs) entails note, because Min-MOD(PowFs) — { {p,a}, }
and thus also (by simple negation-as-failure reasoning) not b, p and a. But
Min-MOD(PawFsO{p})={ {p, a}, {p,c,b} }, thus GWFS(PgwfsO {p}) does
not entail not c.

Pg w f sc partial evaluates Pg w f s - the last two clauses were amalgamated
in one single clause. Obviously, a semantics should assign the same meaning to
these programs: unfortunately GWFS does not!

The next principle, Modularity, has some similarities with PPE. It enables us
to compute a semantics by modularizing it into certain “subprograms” (formed
of the relevant rules). The semantics of these modules can be computed first
and the semantics of the whole program can be determined by reducing this
program with literals that were already determined.

Definition 7.5 (Modularity)
Let P = P\\J P2 and for every A € Bp^: reLrul(P, A) Q P2 -
The principle of Modularity is: SEM{P) = SEM{Pi^^^^^^^ U P2).

we compare the program

Pi: b ■Í- V
yWx
zM y
m •f- X, z, b
y not m

with the union of the following two programs

Pi- b <r- y P2 : a 4 - e, not g
yVx a a ■f- /, not g
zVy a a <- f, not e
m t- x, z, b a g, not e
y not m eV f y g

J

7.2 Query-Answering Systems and Implementations 69

Properties of Logic-Programming Semantics
Semantics Reference Domain Taut. GPPE Red. Non-Min. Rel.
comp [Cla78] Nondis. — • • • —
GCWA [Min82] Pos. • • • • •
WGCWA [RT88] Pos. — • • — •
DSTABLE [GL91] Dis. • • • • —
WFS [vGRS91] Nondis. • • • • •
STM [Prz91b] Dis. • • • • •
STATIC [Prz95] Dis. • • • • •
D-WFS [BD95d] Dis. • • • • •
DWFS [Dix92b] Dis. • • • • •
Strong WFS[Ros92] Dis. — — • — •
WD-WFS [BD95d] Dis. — • • — •
WDWFS [Dix92b] Dis. — • • — •

Table 6 : Semantics and Their Equivalence-Transformations

P2 is a stratified program and STM derives a. Concerning Pj, different
intuitions seem possible. One can argue, that not m should be derivable, since
the only way to derive m is by using the fourth clause, which means deriving b,
which means deriving y which excludes deriving x or z. This is the way. Pi is
handled by the first version of STM. The second (final) version STM does not
derive not m. But if we apply STM to P(U P2 , then not m is derivable. This
shows that weak Modularity is not satisfied: we consider this to be a serious
shortcoming.

Typical results of Dix are

• WFS is the weakest semantics satisfying some of these weak properties,

• WFS can be uniquely characterized if some strong properties are added.

We conclude with Table 6 : an overview of the properties of some semantics
mentioned above.

7.2 Q uery-A nsw ering S y stem s and Im p lem en ta tion s

In this section we give a rough overview of what semantics have been im
plemented so far and where they are available. As already explained in Sec
tions 3.5, 6.5, our NMR-semantics are undecidable in general. Nevertheless we
think it is very important to have running systems that

1 . can handle programs with free variables, and

2. are Goal-Oriented.

70 7 WHAT DO WE WANT AND WHAT IS IMPLEMENTED?

To ensure completeness (or termination) we need then additional requirements
like allowedness (to prevent floundering, see Section 3.1) and no function sym
bols.

Although these restrictions ensure the Herbrand-universe to be flnite (and
thus we are really considering a propositional theory) we think that such a sys
tem has great advantages over a system that can just handle ground programs.
For a language C, the fully instantiated program can be quite large and difficult
to handle effectively.

The goal-orientedness (or Relevance as introduced in Section 7.1) is also
important — after all this was one reason of the success of SLD-Resolution. As
noted above, such a goal-oriented approach is not possible for STABLE.

LP-Semantics

Various commercial PROLOG-systems perform variants of SLDNF-Resolution.
Chan’s constructive negation has also been implemented as part of the master-
theses [LudQl, Vor91].

Non-Disjunctive NMR-Semantics

There are many theoretical papers that deal with the problem of implementation
([BD93, KSS91, DN95, FLMS93]) but only few running systems. The problem
of handling and representing ground programs given a non-ground one has also
been adressed [KNS94, KNS95, EGLS96],

In [BNNS93, BNNS94] the authors showed how the problem of computing
stable models can be transformed to an Integer-Linear Programming Problem.
This has been extended in [DM93] to disjunctive programs.

Inoue et. aJ. show in [IKH92] how to compute stable models by transforming
programs into propositional theories and then using a model-generation theorem
prover.

Extended logic programs under the well-founded semantics are considered
by Pereira and his colleagues; [PAA93, AP96].

[NS96] describes an implementation of WFS and STABLE with a special eye
on complexity.

The most advanced system has been implemented by David Warren and his
group in Stony Brook based on OLDT-algorithm of [TS8 6]. They first devel
oped a meta-interpreter (SLG, see [CW96]) in PROLOG and then directly mod
ified the WAM for a direct implementation of WFS (XSB). They use tabling-
methods and a mixture of Top-Down and bottom-up evaluation to detect loops.
Their system is complete and terminating for non-floundering DATALOG. It
also works for general programs but termination is not guaranteed. This sys
tem is described in [CW93, CSW95, CW95], and is available by anonymous ftp
from f tp . cs. sunysb. edu/pub/XSB/.

fVx'I
i

I

7.2 Query-Answering Systems and Implementations 71

Disjunctive NMR-Semantics

There are theoretical descriptions of implementations that have not yet been
implemented: [FM95, MR95, CL95].

Here are some implemented systems. Inoue et. al. show in [IKH92] how
to compute stable models for extended disjunctive programs in a bottom-up-
fashion using a theorem prover.

The approach of Bell et. al. ([NNS91]) was used by Dix/Müller to implement
versions of the stationary semantics of Przymusinski; [MD93, DM92, MÜ192].

Brass/Dix have implemented both D-WFS and DSTABLE for allowed DAT-
ALOG programs ([BD95a]̂)̂. An implementation of static semantics is de
scribed in [BDP96]̂ .̂

Seipel has implemented in his DisLog-system various (modified versions of)
semantics of Minker and his group. His system is publicly available at the URL
h ttp : / / sunWWW.iniormatik.uni-tuebingen.de:8080/dislog/dislog.tar.Z.
However we again point to the very irregular behaviour of these semantics illus
trated by Example 7.4.

Finally, there is the DisLoP project undertaken by the Artificial Intelligence
Research Group at the University of Koblenz and headed by J. Dix and U. Fur-
bach ([DF96]). This project aims at extending certain theorem proving concepts,
such as restart model elimination [BF94] and hyper tableaux [BFN96] calculi,
for disjunctive logic programming. The hyper tableaux calculus can handle pos
itive queries with respect to positive disjunctive logic programs and seems to
facilitate minimal model generation. Restart model elimination calculus does
not use any contrapositives of the given clauses and thus allows for their pro
cedural reading. Moreover, it is answer complete for positive queries [BFS95].
Thus, they are suitable for implementing an interpreter for positive prorgams
and the DisLoP system extends this further for non-monotonic negations too.

Currently, DisLoP system can perform minimal model reasoning based on
GCWA and WGCWA. Minimal model reasoning is an important problem to
tackle, since any well-known semantics for negation is a conservative extension
of that. DisLoP can perform minimal model reasoning in both top-down and
bottom-up manners. The bottom-up approach employs the hyper tableaux cal
culus to generate potential minimal models and then uses a novel technique
to check the minimality of the generated model without any reference to other
models. This approach is described in [Nie96a, Nie96b]. The top-down approach
is based on an abductive framework studied in [Ara96]. This introduces an infer
ence rule, negation as failure to explain, which allows us to assume the negation
of a sentence if there are no abductive explanations for that. The DisLoP sys
tem uses a modified restart model elimination calculus to generate abductive
explanations of the given sentence and employs negation-as-failure-to-explain
inference rule for minimal model reasoning. This system can be extended to

t p ://ftp.infonnatik.uni-hannover.de/softuare/index.html

^®f tp://ftp. inf omatik.uni-hannover .de/sof tware/static/static .html

http://sunWWW.iniormatik.uni-tuebingen.de:8080/dislog/dislog.tar.Z
ftp://ftp.infonnatik.uni-hannover.de/softuare/index.html

72 7 WHAT DO WE WANT AND WHAT IS IMPLEMENTED?

handle non-monotonic semantics such as D-WFS, STATIC etc. Information on
the DisLoP project and related publications can be obtained from the WWW
page <h ttp : / /www.uni-koblenz.de/ag-ki/DLP/>.

Acknowledgements
We thank Chandrabose Aravindan, Ulrich Furbach and Ilkka Niemela who pro
vided us with many useful remarks. Katrin Erk and Dorothea Schafer proofread
parts of the paper — special thanks to them.

http://www.uni-koblenz.de/ag-ki/DLP/

r

73

A Appendix

A .l P red ica te Logic

We assume the reader is familiar with the basic notions of predicate logic such
as models, formulae, satisfiability |= and derivability h. There exist several
calculi for first-order predicate logic like Hibert-style, Resolution-style, Gentzen-
style or natural deduction-style calculi. One of the main theorems states the
completeness of such calculi with respect to the semantics given by models:

Theorem A.l (Completeness)
A formula follows semantically from a theory T (is true in all models of T)
iff ip is derivable from T by means of a particular calculus.

TV-ip iff T\=ip

This theorem tells us that we can enumerate all the theorems of a theory, but it
does not provide us with a decision-method to do so. In fact, as we will explain
now, such a method does not exist.

Before turning to undecidability, let us emphasize that in the whole paper
we are dealing with predicate logic without equality But we can try to
simulate “=” as follows. We introduce a binary relation-symbol eq and require
that it satisfies the following axioms with respect to an underlying language £:

Vx eq{x, x)

for all function-symbols / of suitable arity:
Vxi... x„, 2/1 ... j/„ {eq{xi, yi)... eg(x„, y„)) ->■ e q { f { x i x„), /(yi, .. ., y„))

for all predicate-symbols P of suitable arity:
Vxi ...XnVi ...yn {eq{xi,yi)...eq{xn,yn)) ^ {P{xi,... ,Xn) -t P(yi,...,y„)).

This set, is denoted by EQ .̂ It can be shown that transitivity and symmetry
of eq follow from these axioms. Let us consider the language of Arithmetic
Tav which contains: 0 (a constant), s (a unary function-symbol), eq (a two-ary
relation-symbol) and ©, ® (ternary relation-symbols).

We have in mind to axiomatize the theory of natural numbers. Before we
do so we introduce the following abbreviation. The formula 3\z (j>{z) stands for

3z ((t>{z) A Vy <j){y) eq{y, z)).

Definition A.2 (Arithmetic At fin)
Arfin is the finite set consisting of EQc^

VxVyB.fz ©(x,y,z)
Vx ©(x,0,x)
'ix'iy'iz ®{x,y,z)

and the following axioms:

©(x,s(x),s(z))

74 A APPENDIX

\/x\fy3!z
Vi

®{x,y,z)
®(i,0,0)

'ix'iy'iz'iz' 0 (1 , y, z) —>■ (0 (1 , s{y),z') A ©(z, x, z'))

The set of natural numbers Af (IN, 0^, , ©-̂ , 0 ^ , eq’̂) is a model of Aifin-
Here 0^ is the “true” 0, s-̂ is the successor-function, ©-̂ is addition and 0 -̂
is multiplication (viewed as relations), eq^ is identity. We note the following
facts:

1. The set {(f): Arjin |= </>} is recursively enumerable but not recursive.

2. The set {(j) \ AA j= (̂ } is not even recursively enumerable.

We even have

Theorem A.3 (Gödel)
No set of formulae containing Arfin and having AÍ as model, is recursive.

Every recursively enumerable set of formulae $ that contains Arfin o,nd has
M as a model, is incomplete, i.e. there is ip with: J\f \= ip but ^ ^ ip. Therefore
no complete axiomatization of AÍ is possible.

Note that, although A/ formally is not a Herbrand model, it is isomorphic to
such a model. In fact, the axioms immediately imply that there is, up to isomor-
phy, only one single Herbrand-model of Ar/i„ with respect to T-Ar- Therefore
to determine if a formula is true in all Herbrand-models of Ar/i„ is just as com
plicated as the theory of AÍ itself. AÍ contains, for example, famous statements
(or there negation) from number theory like Goldbach-conjecture or Fermat’s
last theorem.

A .2 C om p lex ity T h eory

We assume some familiarity with the classes P (problems solvable in determinis
tic polynomial time) and NP (problems solvable in nondeterministic polynomial
time). The class co-NP is the complement of NP, i.e. a problem is in co-NP if its
complement is in NP. From these sets we can build larger classes by considering
problems solvable in deterministic (resp. nondeterministic) time where we allow
to ask queries to an NP-oracle: i.e. whenever we come up with a subproblem
that lies in NP, we just ask an oracle which immediately gives us the answer
(we count this as just one step). This gives rise to the polynomial hierarchy:

Definition A.4 (Polynomial Hierarchy)
For a complexity class C we denote by P*̂
solvable in deterministic polynomial (resp.

(resp. NP^) the class of problems
nondeterministic polynomial) time

A .2 Complexity Theory 75

using C-oracles. Let So “ Üq := P and

S,+i := NP^‘
n*+i ~ co-NP^^
Ai+1 := P -̂

Thus Si is NP with queries to a P-oracle, i.e. Si = NP. Similarly we have
Hi = co-NP and Ai = P. A problem is in A2 = P^^ if it can be solved in
deterministic polynomial time with subcalls to an NP-oracle. Although the index
is 2, A2 is considered to belong to the first level of the polynomial hierarchy.

The second level of this hierarchy consists of S2 , II2 and A3 . Here S2 :=
NP^ .̂- nondeterministic polynomial time with queries to an NP-oracle. II2 :=
co-NP’̂ P and A3 ;= p[NP̂ '’l.

It is immediate that

U n* C Ak+i C Sfc+iDlIjt+i

but it has not yet been proved that the inclusions are proper. That is, it is not
known if the hierarchy collapses at some point or not.

The polynomial hierarchy classifies a subclass of all decidable problems,
namely those that are NP-hard. A problem is called NP-hard if any other
problem in NP can be polynomially reduced to it. Of particular interest are
those problems in a class Hi; or S* that are the hardest ones: they are called
complete. This means that all problems in the respective class can be polyno
mially reduced to such a complete problem and the problem itself belongs to
this class. As an example, to determine if a formula is valid is co-NP-complete.
Thus, satisfiability of a propositional formula is NP-complete.

An analogue hierarchy exists (in fact it was the prototype of the polynomial
hierarchy) for undecidable problems. The notation is analog to the one just
introduced. Therefore one often adds a superscript P to the 11* and S* which
stands for polynomial (but not for an oracle) to denote the polynomial hierarchy.

To introduce the arithmetical hierarchy we consider the model Ai of the nat
ural numbers and £^r-formulae. We call such formulae for short arithmetical.
We classify arithmetical formulae according to their quantifier-alternations;

Definition A.5 (Arithmetical Hierarchy)
We call an arithmetical formula E* (resp. 11°̂ if it is of the form 3V...</>
(resp. y3...(j)) where (f> is quantifier-free and there are at most k — 1 alternations
of quantifier-blocks.

We call a set M of natural numbers Tfj.-definable, if M is definable by a
-formula. This means that there is a T, -̂formula (p{x) with one free variable

X such that
M t= <}>{i) iff i G M.

76 A APPENDIX

Note that the Eg-definable sets coincide with the ÜQ-definable ones: they are
exactly the recursive sets. The recursive enumerable sets are the Sj-definable
ones, the Ili-definable sets are their complements. The set corresponding to
the famous Halting Problem, i.e. the set of all Gödel numbers of those Turing-
machines that stop on their own Gödel number, is Ej, so this problem is located
very low in the hierarchy.

The higher a problem lies in the hierarchy, the more undecidable it is. For
example a problem located at the second level, say E°, can be thought of as
being recursively enumerable using an oracle which solves Ei-problems (like the
halting problem).

Analogously to the polynomial hierarchy we have the notions of E°-complete
and n°-complete. As an example, the halting problem is Ej-complete.

In contrast to the polynomial hierarchy, the arithmetical hierarchy is strict.
We denote by A° the intersection of E°̂]̂ and We have

e2 u n? c a2 = e2+i n n?̂*+1 •

Are there more undecidable problems, not yet captured by our hierarchy?
Yes, take for example the theory of AÍ considered in Section A.l. Obviously, the
general problem to determine if an arbitrary formula is true or not in AÍ can
not be captured at a certain level, because the class of formulae in question can
have unlimited alternations of quantifiers. The careful reader may have asked
himself what the superscript 0 means in E^? It just means that we consider just
first-order formulae and we do not allow our arithmetical formulae to contain
second-order quantifiers.

This remark gives rise to the analytical hierarchy, denoted by E\, Ilĵ , where
we consider second-order arithmetical formulae. We only count the alternations
of the quantifiers over sets. So any E°-formula is in Ej.

Note that for the arithmetical hierarchy the identity Eg = E° n n° holds.
The analogue for the analytical hierarchy does not hold. A counterexample is
given by the theory of the natural numbers AÍ: the set of true sentences in
arithmetic is in E} fl flj; but not in Ej. This set is also called hyperarithmetical
for obvious reasons.

For a more detailed treatment of the topics in this section we refer the
reader to the standard literature: [BDG88, GJ79, Joh90] and [Pap94, Odi89]
for undecidability.

A .3 D efau lt Logic

Reiter’s default logic [ReiSO] is one of the most prominent nonmonotonic logics.
Default logic assumes knowledge to be represented in terms of a default theory.
A default theory is a pair (D, W). W is a set of first order formulas representing
the facts which are known to be true with certainty. £> is a set of defaults the

t

A.3 Default Logic 77

form
A :

C

where A, Bi and C are classical formulas. We will also frequently use the al
ternative, less space consuming notation A:Bi, . .., B^/C for this default. The
default has the intuitive reading: if A is provable and, for all i (1 <i < n), -iBj
is not provable, then derive C. A is called the prerequisite, B{ a eonsistency
condition or justification, and C the consequent of the default. For a default d
we use pre{d), just{d), and cons{d) to denote the prerequisite, the set of jus
tifications, and the consequent of d, respectively. Open defaults, i.e., defaults
with free variables, are usually interpreted as schemata representing all of their
closed instances.

Default theories induce so-called extensions which represent acceptable belief
sets a reasoner may adopt based on the available information. A formula p is
called a skeptical consequence of (D,W) iff p is contained in all extensions of
{D,W). p is called a credulous consequence of (D,W) iff p is contained in at
least one extension of [D, W).

We will first present a definition of extensions which is slightly different
from (but equivalent to) Reiter’s original definition. We have found that this
definition is somewhat easier to digest. The original definition will be presented
later.

Intuitively, E is an extension of {D, W) iff jE is a deductively closed (in the
sense of classical logic) superset of W satisfying the following two properties

1. all defaults that are “applicable” with respect to E have been applied,

2. every formula in E has a “derivation” from W and applicable defaults.

To make the two requirements more precise we introduce the following notion:

Definition A.6 (Default Proof)
Let {D, W) be a default theory, S a set of formulas, and p a formula. A {D, W)-
default proof for p is a finite sequence P = (di,..., d„) of defaults in D such
that:

1. W \J {cons{di),... ,cons{di-i)} h pre{di), for i G {1,... ,n},

2. W Ö {cons{di),... ,cons{dn)} p.

P is valid in S iff S does not contain the negation of a justification of a default
in P.

As usual I- denotes classical provability. We now can state the definition of
extensions formally:

‘̂‘Reiter treats open defaults somewhat differently and uses a more complicated method to
define extensions for them.

78 A APPENDIX

Definition A .7 (Extension 1)
Let {D, W) be a default theory. E is an extension of{D, W) iffE is a deductively
closed superset of W satisfying the conditions

1. if A:Bi,... ,Bn/C E D, A E E and for all i {1 < i < n) -̂ Bi ^ E, then
C in E, and

2. p E E implies there is a {D,W)-default proof for p valid in E.

Reiter’s equivalent original definition is more compact. It defines extensions as
fixed points of a certain operator.

Definition A .8 (Extension 2)
Let (D,W) be a default theory, S a set of formulas. Let T{S) be the smallest
set such that:

1. W C T{S),

2. Th{T{S)) = r{S),

3. if A.Bi,..., Bn/C E D, A E E(5), -'Bi ^ S {1 <i < n), then C E E(5).

E is an extension of (D, W) iff E = T{E), that is, if E is a fixed point of F.

We finally give a third, quasi-inductive characterization of extensions, also
due to Reiter. This version is often used in proofs about default logic and makes
the way in which formulas have to be grounded in the premises more explicit.
Let E be a set of formulas and define, for a given default theory {D,W), a
sequence of sets of formulas as follows:

Eq = W, and for i > 0
Ej+i = Thî Ef) U {C* I A:Bi,..., Bn/C E D, A E E{, ~'B{ ^ E}.

It can be shown that E is an extension of (E, W) iS E — USo appear
ance of E in the definition of Ej+i is what renders this alternative definition of
extensions non-constructive.

Default theories may have an arbitrary number of extensions (including
zero). Extensions are always consistent if W is and if there are no degener
ate defaults without consistency conditions. If W is inconsistent then the single
extension of {D,W) is the set of all formulas. Extensions are maximal in the
following sense: if E is an extension then there is no extension E' such that
E' C E.

A .4 C ircu m scrip tion

Circumscription is a method of computing the closure of a theory by restricting
its models to those that have minimal extensions of some of the predicates and
functions. Since its first formulation by McCarthy [McC80], it has taken on

i

A. 4 Circumscription 79

pi -> el
p2 -> e2
p3 -> e3

Model Ml Model M2

Figure 5: Two Models of a Theory with the Same Valuation.

several different forms, including domain circumscription [McC79] (minimizing
the elements in the universe of models), and the most popular and useful version,
parallel predicate circumscription [McCSO, McC8 6 , Lif85] which we present here.

Although circumscription was originally presented as a schema for adding
more formulas to a theory (just as Clark’s completion does), here we describe
it in terms of restricting the models of the theory. This view leads to the
generalization of circumscription by model preference theories, and is more use
ful analytically in relating circumscription to other nonmonotonic formalisms.
More detailed references to circumscription can be found in Lifschitz’ excellent
survey article [Lif94].

Choose a language C, and let P be the set of predicate symbols that we
are interested in minimizing, and Z another set of predicate symbols whose
interpretation we allow to vary across compared models. For example, if we
wish to minimize the number of cannibals, we would let P = {C}, and Z be all
other predicate symbols (the importance of Z will be indicated later). Suppose
A is a theory containing the statements C(pi), C(j>2), and C{pz), but no other
assertions using C. Then every model of A will have at least the individuals
referred to by pi,P2 , andpz with property C. Now consider two models with the
same valuation function from terms to individuals, as in Figure 5. In model Mi,
the extension of the predicate C includes just the three individuals ei, 6 2 , and 6 3 .
In model M2 there is a fourth individual, 6 4 , who is a cannibal. Circumscription
would prefer Mi to M2 , since the extension of C in Mi is a proper subset of
its extension in M2 . Under appropriate assumptions (that these terms refer to
different individuals), circumscription would yield the result -'C(p4), which is
not present in the original theory.

80 A APPENDIX

Let A(P, Z) be a first-order sentence containing the symbols P and Z. Cir
cumscription prefers models of A{P, Z) that are minimal in the predicates P,
assuming that these models have the same interpretation for all symbols not in
P or Z. A may contain predicates other than P and Z-, these are called the
fixed symbols.

To state this more formally, let Mi and M2 be two models of A(P, Z). \M\
is the universe of model M, and MfK} is the interpretation of the symbol K in
M. Then
Definition A .9 (M inim al M odels)

1. |M i| = |M2l.
Ml M2 iff { 2. MilKj = M2 [Kj for all K not in P, Z.

3. Mi[Pi]C for all Pi £ P.

is a preorder relation (reflexive and transitive) on models, but not nec
essarily a partial order, since it is not antireflexive. We define the strict order
Mi < 1^’̂ 1M2 as Ml M2 and not M2 Mi- The preferred models of
A{P, Z) are those that are minimal according to the strict ordering.

REFERENCES 81

References

[AB90] K. R. Apt and Howard A. Blair. Arithmetic Classification of perfect
Models of stratified Programs. Fundamenta Informaticae, XIII;1-17,
1990. Addendum in Vol. XIV, pages 339-344, 1991.

[AB94] K. R. Apt and Roland N. Bol. Logic Programming and Negation:
A Survey. Journal of Logic Programming, 19-20:9-71, 1994.

[AP95] Jose Julio Alferes and Luiz Moniz Pereira. An argumentation theo
retic semantics based on non-refutable falsity. In J. Dix, L. Pereira,
and T. Przymusinski, editors. Nonmonotonic Extensions of Logic
Programming, LNAI 927, pages 3-22. Springer, Berlin, 1995.

[AP96] Jose Julio Alferes and Luiz Moniz Pereira. Reasoning with Logic
Programming. LNCS. Springer, Berlin, 1996. to appear.

[APP96] Jose Julio Alferes, Luiz Moniz Pereira, and Teodor Przymusinski.
Strong and Explicit Negation in Non-Monotonic Reasoning and
Logic Programming. In L.M. Pereira and E. Orlowska, editors,
JELIA ’96, to appear. Springer, 1996.

[Apt90] K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Vol. B, chapter 10, pages 493-574.
Elsevier Science Publishers, 1990.

[Ara96] Chandrabose Aravindan. An abductive framework for negation in
disjunctive logic programming. In L. M. Pereira and E. Orlowska,
editors. Joint European workshop on Logics In AI. LNAI, Springer-
Verlag, 1996. (to appear).

[Bar75] Jon Barwise. Admissible Sets and Structures. Springer, 1975.

[BD93] Roland N. Bol and L. Degerstedt. Tabulated resolution for well-
founded semantics. In Proc. Int. Logic Programming Symposium’93,
Cambridge, Mass., 1993. MIT Press.

[BD95a] Stefan Brass and Jürgen Dix. A General Approach to Bottom-Up
Computation of Disjunctive Semantics. In J. Dix, L. Pereira, and
T. Przymusinski, editors. Nonmonotonic Extensions of Logic Pro
gramming, LNAI 927, pages 127-155. Springer, Berlin, 1995.

[BD95b] Stefan Brass and Jürgen Dix. Characterizations of the Stable Se
mantics by Partial Evaluation. In A. Nerode, W. Marék, and
M. Truszczynski, editors. Logic Programming and Non-Monotonic
Reasoning, Proceedings of the Third International Conference, LNCS
928, pages 85-98, Berlin, June 1995. Springer.

i=
J

82 REFERENCES

[BD95c] Stefan Brass and Jürgen Dix. D-WFS: A Confluent calculus and an
Equivalent characterization. Technical Report TR 12/95, University
of Koblenz, Department of Computer Science, Rheinau 1, September
1995.

[BD95d] Stefan Brass and Jürgen Dix. Disjunctive Semantics based upon
Partial and Bottom-Up Evaluation. In Leon Sterling, editor. Pro
ceedings of the 12th Int. Conf. on Logic Programming, Tokyo, pages
199-213. MIT Press, June 1995.

[BD96] Stefan Brass and Jürgen Dix. Characterizing D-WFS: Confluence
and Iterated GCWA. In L.M. Pereira and E. Orlowska, editors,
JELIA ’96, to appear. Springer, 1996.

[BDG8 8] J.L. Balcázar, I. Diaz, and J. Gabarró. Structural Complexity I.
Springer-Verlag, Berlin, 1988.

[BDNP96] Stefan Brass, Jürgen Dix, Ilkka Niemela, and Teodor. G. Przymusin-
ski. A Comparison of Static Semantics and D-WFS. Technical Re
port TR 2/96, University of Koblenz, Department of Computer Sci
ence, Rheinau 1, February 1996.

[BDP96] Stefan Brass, Jürgen Dix, and Teodor. C. Przymusinski. Charac
terizations and Implementation of Static Semantics of Disjunctive
Programs. Technical Report TR 4/96, University of Koblenz, De
partment of Computer Science, Rheinau 1, February 1996.

[BED92] Rachel Ben-Eliyahu and Rina Dechter. Propositional Semantics for
Disjunctive Logic Programs. In K. R. Apt, editor, LOGIC PRO
GRAMMING: Proceedings of the 1992 Joint International Gon-
ference and Symposium, Cambridge, Mass., November 1992. MIT
Press.

[BF91a] Nicole Bidoit and Christine Froidevaux. General logical Databases
and Programs: Default Logic Semantics and Stratification. Infor
mation and Gomputation, 91:15-54, 1991.

[BF91b] Nicole Bidoit and Christine Froidevaux. Negation by Default and
unstratiflable logic Programs. Theoretical Gomputer Science, 78:85-
112, 1991.

[BF94] P. Baumgartner and U. Furbach. Model Elimination without Contra-
positives and its Application to PTTP. Journal of Automated Rea
soning, 13:339-359, 1994. Short version in: Proceedings of CADE-
12, Springer LNAI 814, 1994, pp 87-101.

REFERENCES 83

[BFN96] P. Baumgartner, U. Furbach, and I. Niemela. Biyper Tableaux. In
JELIA 96. European Workshop on Logic in AI, Springer, LNCS,
1996. (Long version in: Fachherichte Informatika 8-96, Universitat
Koblenz-Landau).

[BFS95] P. Baumgartner, U. Furbach, and F. Stolzenburg. Model Elimina
tion, Logic Programming and Computing Answers. In Proceedings
of IJCAI ’95, 1995. (to appear. Long version in: Research Report
1/95, University of Koblenz, Germany).

[BG94] Gh. Baral and Michael Gelfond. Logic Programming and Knowlege
Representation. Journal of Logic Programming, 19-20, 1994.

[BM8 6] R. Barbuti and M. Martelli. Negation as Failure. Gompleteness
of the Query Evaluation Process for Horn Glause Programs with
Recursive Definition. Journal of Automated Reasoning, 2:155-170,
1986.

[BNNS93] Colin Bell, Anil Nerode, Raymond T. Ng, and V. S. Subrahma-
nian. Implementing Stable Semantics by Linear Programming. In
Luis Moniz Pereira and Anil Nerode, editors. Logic Programming
and Non-Monotonic Reasoning, Proceedings of the Second Interna
tional Workshop, pages 23-42, Cambridge, Mass., July 1993. Lisbon,
MIT Press.

[BNNS94] Colin Bell, Anil Nerode, Raymond T. Ng, and V. S. Subrahma-
nian. Mixed Integer Programming Methods for Computing Non-
Monotonic Deductive Databases. Journal of the ACM, 41(6):1178-
1215, November 1994.

[Bon93] Piero Bonatti. Shift-based semantics: general results and applica
tions. Technical Report CD-TR-93-59, Technical University of Vi
enna, Inst, fiir Informationssysteme, 1993.

[Bör87] Egon Börger. Unsolvable Decision Problems For Prolog Programs.
In Egon Börger, editor. Computation Theory and Logic, LNCS 270,
pages 37-47, Berlin, 1987. Springer.

[BR91] Catril Beeri and Raghu Ramakrishnan. On the power of magic. The
Journal of Logic Programming, 10:255-299, 1991.

[Bre94] G. Brewka. Adding priorities and specificity to default logic. In
Proc. JELIA-94, York. Springer, 1994.

[Bry90] Frangois Bry. Query evaluation in recursive databases: bottom-up
and top-down reconciled. Data & Knowledge Engineering, 5:289-
312, 1990.

84 REFERENCES

[BS91] Chitta Baral and V.S. Subrahmanian. Dualities between Alternative
Semantics for Logic Programming and Non-monotonic Reasoning.
In Anil Nerode, Wiktor Marék, and V. S. Subrahmanian, editors.
Logic Programming and Non-Monotonic Reasoning, Proceedings of
the first International Workshop, pages 69-86, Cambridge, Mass.,
July 1991. Washington D.C, MIT Press.

[BS92] Chitta Baral and V.S. Subrahmanian. Stable and Extension Class
Theory for Logic Programs and Default Logics. Journal of Auto
mated Reasoning, 8 , No. 3:345-366, 1992.

[CDLS95] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. The size of
a revised knowledge base. In PODS ’95, pages 151-162, 1995.

[CDS95a] M. Cadoli, F. M. Donini, and M. Schaerf. Is intractability of non
monotonic reasoning a real drawback? Technical Report RAP.09.95,
Dipartimento di Informatica e Sistemistica, Universita di Roma “La
Sapienza”, July 1995. To appear in Artificial Intelligence Journal.
Short version appeared in Proc. of AAAI-94, pages 946-951.

[CDS95b] M. Cadoli, F. M. Donini, and M. Schaerf. On compact representa
tions of propositional circumscription. In STACS ’95, pages 205-
216, 1995. Extended version as RAP.14.95 DIS, Univ. of Roma “La
Sapienza”, July 1995. To appear in Theoretical Computer Science.

[CEG92] Marco Cadoli, Thomas Eiter, and Georg Gottlob. An efficient
method for eliminating varying predicates from a circumscription.
Artificial Intelligence Journal, 54:397-410, 1992.

[Gha8 8] David Chan. Constructive negation based on the completed
database. In Proc. 1988 Conf. and Symp. on Logic Programming,
pages 111-125, September 1988.

[CKPR73] A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un systeme
de communication homme-machine en frangais. Technical report,
Groupe de Intelligence Artificielle Universite de Aix-Marseille II,
1973.

[CL89] L. Cavedon and J.W. Lloyd. A Completeness Theorem for SLDNF-
Resolution. Journal of Logic Programming, 7:177-191, 1989.

[CL95] Stefánia Costantini and Gaetano A. Lanzarone. Static Semantics as
Program Transformation and Well-founded Computation. In J. Dix,
L. Pereira, and T. Przymusinski, editors. Nonmonotonic Extensions
of Logic Programming, LNAI 927, pages 156-180. Springer, Berlin,
1995.

i>4

REFERENCES 85

[Cla78] K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker,
editors, Logic and Data-Bases, pages 293-322. Plenum, New York,
1978.

[CS90] Jan Chomicki and V.S. Subrahmanian. Generalized Closed World
Assumption is Il^-Complete. Information Processing Letters,
34:289-291, 1990.

[CS93] Marco Cadoli and Marco Schaerf. A Survey of Complexity Results
for Non-Monotonic Logics. Journal of Logic Programming, 17:127-
160, 1993.

[CSW95] Weidong Chen, Terrance Swift, and David S. Warren. Efficient Top-
Down Computation of Queries under the Well-Founded Semantics.
Journal of Logic Programming, 24(3):219-245, 1995.

[CW89] David Chan and Mark Wallace. An Experiment with programming
using pure Negation. Technical Report TR, ECRC, July 1989.

[CW93] Weidong Chen and David S. Warren. A Goal Oriented Approach
to Computing The Well-founded Semantics. Journal of Logic Pro
gramming, 17:279-300, 1993.

[CW95] Weidong Chen and David S. Warren. Computing of Stable Models
and its Integration with Logical Query Processing. IEEE Transac
tions on Knowledge and Data Engineering, 17:279-300, 1995.

[CW96] Weidong Chen and David S. Warren. Tabled Evaluation with Delay
ing for General Logic Programs. Journal of the ACM, 43(l):20-74,
January 1996.

[DC90] Hendrik Decker and Lawrence Cavedon. Generalizing syntactic
properties which ensure that SLDNE-Resolution is complete and
flounder-free. Technical report, ECRC Munich, January 1990.

[DF96] J. Dix and U. Furbach. The DFG-Project DisLoP on Disjunctive
Logic Programming. Computational Logic, 2:89-90, 1996.

[DG84] W.F. Dowling and J.H. Gallier. Linear Time Algorithms for Testing
the Satisfiability of Propositional Horn Formulae. Journal of Logic
Programming, 1:267-284, 1984.

[DGM94] Jürgen Dix, Georg Gottlob, and Viktor Marék. Causal Models for
Disjunctive Logic Programs. In Pascal Van Hentenryck, editor. Pro
ceedings of the 11th Int. Conf. on Logic Programming, S. Margherita
Ligure, pages 290-302. MIT, June 1994.

86 REFERENCES

[DGM96] Jürgen Dix, Georg Gottlob, and Viktor Marék. Reducing disjunc
tive to non-disjunctive semantics by shift-operations. Fundamenta
Informaticae, forthcoming, 1996.

[Dix91] Jürgen Dix. Glassifying Semantics of Logic Programs. In Anil
Nerode, Wiktor Marék, and V. S. Subrahmanian, editors. Logic Pro
gramming and Non-Monotonic Reasoning, Proceedings of the first
International Workshop, pages 166-180, Cambridge, Mass., July
1991. Washington D.C, MIT Press.

[Dix92a] Jürgen Dix. A Framework for Representing and Characterizing Se
mantics of Logic Programs. In B. Nebel, C. Rich, and W. Swartout,
editors. Principles of Knowledge Representation and Reasoning:
Proceedings of the Third International Conference (KR ’92), pages
591-602. San Mateo, CA, Morgan Kaufmann, 1992.

[Dix92b] Jürgen Dix. Classifying Semantics of Disjunctive Logic Programs.
In K. R. Apt, editor, LOGIC PROGRAMMING: Proceedings of the
1992 Joint International Conference and Symposium, pages 798-812,
Cambridge, Mass., November 1992. MIT Press.

[Dix95a] Jürgen Dix. A Classification-Theory of Semantics of Normal
Logic Programs: I. Strong Properties. Fundamenta Informaticae,
XXII(3):227-255, 1995.

[Dix95b] Jürgen Dix. A Classification-Theory of Semantics of Normal
Logic Programs; II. Weak Properties. Fundamenta Informaticae,
XXII(3):257-288, 1995.

[Dix95c] Jürgen Dix. Semantics of Logic Programs: Their Intuitions and
Formal Properties. An Overview. In Andre Fuhrmann and Hans
Rott, editors. Logic, Action and Information - Essays on Logic in
Philosophy and Artificial Intelligence, pages 241-327. DeCruyter,
1995.

[DM92] Jürgen Dix and Martin Müller. Abstract Properties and Computa
tional Complexity of Semantics for Disjunctive Logic Programs. In
Proc. of the Workshop Wl, Structural Complexity and Recursion-
theoretic Methods in Logic Programming, following the JIGSLP ’92,
pages 15-28. H. Blair and W. Marék and A. Nerode and J. Remmel,
November 1992. also available as Technical Report 13/93, University
of Koblenz, Department of Computer Science.

[DM93] Jürgen Dix and Martin Müller. Implementing Semantics for Dis
junctive Logic Programs Using Fringes and Abstract Properties. In
Luis Moniz Pereira and Anil Nerode, editors. Logic Programming

REFERENCES 87

and Non-Monotonic Reasoning, Proceedings of the Second Interna
tional Workshop, pages 43-59, Cambridge, Mass., July 1993. Lisbon,
MIT Press.

[DM94a] Jürgen Dix and Martin Müller. An Axiomatic Framework for Rep
resenting and Characterizing Semantics of Disjunctive Logic Pro
grams. In Pascal Van Hentenryck, editor. Proceedings of the 11th
Int. Conf. on Logic Programming, S. Margherita Ligure, pages 303-
322. MIT, June 1994.

[DM94b] Jürgen Dix and Martin Müller. Partial Evaluation and Relevance for
Approximations of the Stable Semantics. In Z.W. Ras and M. Ze-
mankova, editors. Proceedings of the 8th Int. Symp. on Methodolo
gies for Intelligent Systems, Charlotte, NC, 1994, LNAI 869, pages
511-520, Berlin, 1994. Springer.

[DM94c] Jürgen Dix and Martin Müller. The Stable Semantics and its Vari
ants: A Comparison of Recent Approaches. In L. Dreschler-Fischer
and B. Nebel, editors. Proceedings of the 18th German Annual Con
ference on Artificial Intelligence (KI ’94), Saarbrücken, Germany,
LNAI 861, pages 82-93, Berlin, 1994. Springer.

[DN95] Lars Degerstedt and Ulf Nilsson. Magic Computation of Well-
founded Semantics. In J. Dix, L. Pereira, and T. Przymusinski, ed
itors, Nonmonotonic Extensions of Logic Programming, LNAI 927,
pages 181-204. Springer, Berlin, 1995.

[Dra94] Wlodzimierz Drabent. What is failure? A constructive approach to
negation. Acta Informatica, 1994. forthcoming.

[Dun92] P. M. Dung. On the relations between stable and wellfounded se
mantics of logic programs. Theoretical Computer Science, 105:7-25,
1992.

[EG93] Thomas Eiter and Georg Gottlob. Propositional Circumscription
and Extended Closed World Reasoning are -complete. Theoretical
Computer Science, 144(2):231-245, Addendum: vol. 118, p. 315,
1993, 1993.

[EGLS96] T. Eiter, G. Gottlob, J. Lu, and V. S. Subrahmanian. Computing
Non-Ground Representations of Stable Models. Technical report.
University of Maryland, 1996.

[EGM93] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Expressive
Power and Complexity of Disjunctive DATALOG. In Proceedings
of Workshop on Logic Programming with Incomplete Information,
Vancouver Oct. 1993, following ILPS’ 93, pages 59-79, 1993.

m

i

88 REFERENCES

[Fag93] F. Fages. Consistency of Clark’s completion and existence of stable
models. Methods of Logic in Computer Science, 2, 1993.

[Fit85] Melvin C. Fitting. A Kripke-Kleene Semantics of logic Programs.
Journal of Logic Programming, 4:295-312, 1985.

[FLMS93] J. A. Fernandez, J. Lobo, J. Minker, and V.S. Subrahmanian. Dis
junctive LP -I- Integrity Constraints = Stable Model Semantics. An
nals of Mathematics and Artificial Intelligence, 8(3-4), 1993.

[FM95] J. A. Fernández and J. Minker. Computing Perfect Models of Dis
junctive Stratified Databases. Annals of Mathematics and Artificial
Intelligence, 1995. to appear.

[GJ79] M.R. Carey and D.S. Johnson. Computers and Intractability. W.H.
Freeman and Company, San Francisco, 1979.

[GL8 8] Michael Gelfond and Vladimir Lifschitz. The Stable Model Seman
tics for Logic Programming. In R. Kowalski and K. Bowen, edi
tors, 5th Conference on Logic Programming, pages 1070-1080. MIT
Press, 1988.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic
Programs and Disjunctive Databases. New Generation Computing,
9:365-387, 1991. (Extended abstract appeared in: Logic Programs
with Classical Negation. Proceedings of the 7-th International Logic
Programming Conference, Jerusalem, pages 579-597, 1990. MIT
Press.).

[Gor93] T. F. Gordon. The Pleadings Game: An Artificial Intelligence Model
of Procedural Justice. PhD thesis, TU Darmstadt, 1993.

[GPSK95] G. Gogic, C. Papadimitriou, B. Selmán, and H. Kautz. The Com
parative Linguistics of Knowledge Representation. In Proceedings
of the 1 4 th International Joint Gonference on Artificial Intelligence,
pages 862-869, Montreal, Canada, August 1995. Morgan Kaufmann
Publishers.

[Gur8 8] Y. Gurevich. Logic and the Challenge of Computer Science. In
E. Börger, editor. Trends in Theoretical Computer Science, chap
ter 1. Computer Science Press, 1988.

[IKH92] Katsumi Inoue, M. Koshimura, and R. Hasegawa. Embedding
negatin-as-failure into a model generation theorem prover. In Deepak
Kapur, editor. Automated Deduction — CADE-11, number 607 in
LNAI, Berlin, 1992. Springer.

REFERENCES 89

[Imi91] T. Imielinski. Incomplete Deductive Databases. Annals of Mathe
matics and Artificial Intelligence, 3:259-294, 1991.

[JdL92] Catholijn Jonker and G.R.Renardel de Lavalette. A tractable al
gorithm for the wellfounded model. Technical Report Logic Group
Preprint Series No. 746, Utrecht University, Dept, of CS, 1992.

[Joh90] D.S. Johnson. A catalog of complexity classes. In J. van Leeuwen,
editor. Handbook of Theoretical Computer Science, volume A. Algo
rithms and Complexity, pages 67-161. 1990.

[KNS94] Vadim Kagan, Anil Nerode, and V. S. Subrahmanian. Computing
Definite Logic Programs by Partial Instantiation. Annals of Pure
and Applied Logic, 67:161-182, 1994.

[KNS95] Vadim Kagan, Anil Nerode, and V. S. Subrahmanian. Computing
Minimal Models by Partial Instantiation. Theoretical Computer Sci
ence, 155:157-177, 1995.

[Kon8 8] Kurt Konolige. Partial Models and Non-Monotonic Reasoning. In
J. Richards, editor. The Logic and Aquisition of Knowledge. Oxford
Press, 1988.

[Kow74] R.A. Kowalski. Predicate logic as a programming language. In Pro-
ceeedings IFIP’ 74, pages 569-574. North Holland Publishing Com
pany, 1974.

[KSS91] David B. Kemp, Peter J. Stuckey, and Divesh Srivastava. Magic
Sets and Bottom-Up Evaluation of Well-Founded Models. In Vijay
Saraswat and Kazunori Ueda, editors. Proceedings of the 1991 Int.
Symposium on Logic Programming, pages 337-351. MIT, June 1991.

[Kun87] Kenneth Kunén. Negation in Logic Programming. Journal of Logic
Programming, 4:289-308, 1987.

[Kun89] Kenneth Kunén. Signed Data Dependencies. Journal of Logic Pro
gramming, 7:231-245, 1989.

[Lif85] Vladimir Lifschitz. Computing Circumscription. In Proceedings of
the International Joint Conference on Artificial Intelligence, Los An
geles, California, pages 121-127, 1985.

[Lif94] V. Lifschitz. Circumscription, pages 297-353. Clarendon, Oxford,
1994.

[Lif96] V. Lifschitz. Foundations of declarative logic programming. In
G. Brewka, editor. Principles of Knowledge Representation. CSLI
publishers. Studies in Logic, Language and Information, 1996.

90 REFERENCES

ÍLlo87l John W. Lloyd. Foundations of Logic Programming. Springer,
Berlin, 2nd edition, 1987.

[LMR92] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of
Disjunctive Logic Programming. MIT-Press, 1992.

[Lud91] Bertram Ludascher. CNF-Prolog: A Meta-Interpreter for Chan’s
Constructive Negation, Implementation. Technical report. Master
Thesis, Karlsruhe University (in german), 1991.

[McC79] John McCarthy. First order theories of individual concepts and
propositions. In B. Meltzer and D. Michie, editors. Machine In
telligence 9, pages 120-147. Edinburgh University Press, Edinburgh,
1979.

[McC80] John McCarthy. Circumscription — a form of nonmonotonic rea
soning. Artificial Intelligence, 13(1-2), 1980.

[McC8 6] John McCarthy. Applications of circumscription to formalizing com-
monsense knowledge. Artificial Intelligence, 28, 1986.

[MD93] Martin Müller and Jürgen Dix. Implementing Semantics for Dis
junctive Logic Programs Using Fringes and Abstract Properties. In
Luis Moniz Pereira and Anil Nerode, editors, Logic Programming
and Non-Monotonic Reasoning, Proceedings of the Second Interna
tional Workshop, pages 43-59, Cambridge, Mass., July 1993. Lisbon,
MIT Press.

[Min82] Jack Minker. On indefinite databases and the closed world assump
tion. In Proceedings of the 6th Conference on Automated Deduction,
New York, pages 292-308, Berlin, 1982. Springer.

[Min8 8] Jack Minker. Foundations of Deductive Databases. Morgan Kauf-
mann, 95 First Street, Los Altos, CA 94022, 1 st edition, 1988.

[Min93] Jack Minker. An Overview of Nonmonotonic Reasoning and Logic
Programming. Journal of Logic Programming, Special Issue, 17,
1993.

[MMP8 8] Paolo Mancarella, Simone Martini, and Dino Pedreschi. Complete
logic Programs with domain-closure Axiom. Journal of Logic Pro
gramming, 5:263-276, 1988.

[Mos74] Y. N. Moschovakis. Elementary Induction on Abstract Structures.
North-Holland, 1974.

REFERENCES 91

[MR95]

[MRT92]

[MÜ192]

[Nie96a]

[Nie96b]

[NNS91]

[NS96]

[Odi89]

[PA92]

[PAA93]

[Pap94]

[Poo85]

Jack Minker and Carolina Ruiz. Computing stable and partial stable
models of extended disjunctive logic programs. In J. Dix, L. Pereira,
and T. Przymusinski, editors, Nonmonotonic Extensions of Logic
Programming, LNAI 927, pages 205-229. Springer, Berlin, 1995.

Wiktor Marék, Arcot Rajasekar, and Mirek Truszczynski. Complex
ity of Computing with Extended Propositional Logic Programs. In
Proc. of the Workshop Wl, Structural Complexity and Recursion-
theoretic Methods in Logic Programming, following the IJCSLP ’92,
pages 93-102. H. Blair and W. Marék and A. Nerode and J. Remmel,
November 1992.

Martin Müller. Examples and Run-Time Data from KORF, 1992.

I. Niemela. Implementing circumscription using a tableau method.
In Proceedings of the European Conference on Artificial Intelligence,
Budapest, Hungary, August 1996. John Wiley. To appear.

I. Niemela. A tableau calculus for minimal model reasoning. In
Proceedings of the Fifth Workshop on Theorem Proving with Analytic
Tablearix and Related Methods, pages 278-294, Terrasini, Italy, May
1996. Springer-Verlag.

Anil Nerode, Raymond T. Ng, and V.S. Subrahmanian. Computing
Circumscriptive Deductive Databcises. CS-TR 91-66, Computer Sci
ence Dept., Univ. Maryland, University of Maryland, College Park,
Maryland, 20742, USA, December 1991.

Ilkka Niemela and Patrik Simons. Efficient implementation of the
well-founded and stable model semantics. In Proceedings of the Joint
International Conference and Symposium on Logic Programming,
Bonn, Germany, September 1996. To appear.

P. Odifreddi. Classical Recursion Theory. North-Holland, 1989.

L.M. Pereira and J.J. Alferes. Well founded semantics for logic pro
grams with explicit negation. In Proc. 10th European Conference on
Artificial Intelligence, Vienna, 1992.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Non-Monotonic
Reasoning with Logic Programming. Journal of Logic Programming,
17:227-264, 1993.

C.H. Papadimitriou.
1994.

Computational Complexity. Addison-Wesley,

D. Poole. On the comparison of theories: Preferring the most specific
explanation. In Proc. IJCAI-85, Los Angeles, 1985.

92 REFERENCES

[Pra93] H. Prakken. Logical Tools for Modelling Legal Argument. PhD thesis,
VU Amsterdam, 1993.

[Prz91a] Teodor Przymusinski. Semantics of Disjunctive Logic Programs and
Deductive Databases. Technical report, Department of Computer
Science, University of California at Riverside, November 1991.

[Prz91b] Teodor Przymusinski. Stationary Semantics for Normal and Disjunc
tive Logic Programs. In C. Delobel, M. Kifér, and Y. Masunaga, ed
itors, DOOD ’91, Proceedings of the 2nd International Conference,
Berlin, December 1991. Muenchen, Springer. LNCS 566.

[Prz95] Teodor Przymusinski. Static Semantics For Normal and Disjunctive
Logic Programs. Annals of Mathematics and Artificial Intelligence,
Special Issue on Disjunctive Programs, 1995. to appear.

[Rei78] Raymond Reiter. On closed world data bases. In Hervé Gallaire
and Jack Minker, editors. Logic and Data Bases, pages 55-76, New
York, 1978. Plenum.

[Rei80] Raymond Reiter. A Logic for Default-Reasoning. Artificial Intelli
gence, 13:81-132, 1980.

[RLM89] Arcot Rajasekar, Jorge Lobo, and Jack Minker. Weak Generalized
Closed World Assumption. Journal of Automated Reasoning, 5:293-
307, 1989.

[RN95] Stuart Russel and Peter Norvig. Artificial Intelligence — A Modem
Approach. Prentice Hall, New Jersey 07458, 1995.

[Ros89] Kenneth A. Ross. The well-founded semantics for disjunctive logic
programs. In Proceedings of the first International Conference on
Deductive and Object Oriented Databases, Kyoto, Japan, pages 1-
22, 1989.

[Ros92] Kenneth A. Ross. A procedural semantics for well-founded negation
in logic programs. Journal of Logic Programming, 13:1-22, 1992.

[RT8 8] Kenneth A. Ross and Rodney A. Topor. Inferring negative Informa
tion from disjunctive Databases. Journal of Automated Reasoning,
4:397-424, 1988.

[Sac93] Domenico Sacca. The Expressive Power of Stable Models For DAT-
ALOG Queries with Negation. In Proceedings of Workshop on Logic
Programming with Incomplete Information, Vancouver Oct. 1993,
following ILPS’ 93, pages 150-162, 1993.

REFERENCES 93

[Sak89] Chiaki Sakama. Possible Model Semantics for Disjunctive Databases.
In Won Kim, Jean-Marie Nicolas, and Shojiro Nishio, editors. De
ductive and Object-Oriented Databases, Proceedings of the First In
ternational Conference (DOOD89), pages 1055-1060, Kyoto, Japan,
1989. North-Holland Publ.Co.

[Sch90] John S. Schlipf. The Expressive Powers of the Logic Programming
Semantics. In Proceedings of the Ninth ACM Symposium on Princi
ples of Databases, pages 196-204, 1990.

[Sch92] John S. Schlipf. A Survey of Complexity and Undecidability Results
in Logic Programming. In H. Blair, W. Marék, A. Nerode, and J.
Remmel, editors. Proceedings of the Workshop on Complexity and
Recursion-theoretic Methods in Logic Programming, following the
JICSLP’92. informal, 1992.

[She88a] John C. Shepherdson. Language and Equality Theory in Logic Pro
gramming. Pm-88-08, School of Mathematics, University of Bristol,
School of Mathematics, University Walk, August 1988.

[She88b] John C. Shepherdson. Negation in Logic Programming. In Jack
Minker, editor. Foundations of Deductive Databases, chapter 1,
pages 19-88. Morgan Kaufmann, 1988.

[She91] John C. Shepherdson. Unsolvable Problems for SLDNF-Resolution.
Journal of Logic Programming, 10:19-22, 1991.

[SI93] Chiaki Sakama and Katsumi Inoue. Negation in Disjunctive Logic
Programs. In D. Warren and Peter Szeredi, editors. Proceedings of
the 10th Int. Conf. on Logic Programming, Budapest, Cambridge,
Mass., July 1993. MIT Press.

[SS95] Chiaki Sakama and Hirohisa Seki. Partial Deduction of Disjunctive
Logic Programs: A Declarative Approach. In Logic Program Synthe
sis and Transformation - Meta Programming in Logic, LNCS 883,
pages 170-182, Berlin, 1995. Springer.

[Sta94] Robert F. Stark. Input/output dependencies of normal logic pro
grams. Journal of Logic and Computation, 4(3):249-262, 1994.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285-309, 1955.

[THT86] Richmond Thomason, Jeff Horty, and D. S. Touretzky. A Calculus
for Inheritance in Monotonic Semantic Nets. Research Note CMU-
CS 86-138, Carnegie Mellon, 1986.

94 REFERENCES

[Tou86] D. S. Touretzky. The Mathematics of Inheritance. Research Notes
in Artificial Intelligence. Pitman, London, 1986.

[TS86] H. Tamaki and T. Sato. OLD Resolution with Tabulation. In Pro
ceedings of the Third International Conference on Logic Program
ming, London, LNAI, pages 84-98, Berlin, June 1986. Springer.

[TTH91] D. S. Touretzky, R. H. Thomason, and J. F. Horty. A skeptic’s
menagerie; Confiictors, preemptors, reinstaters, and zombies in non
monotonic inheritance. In Proc. 12th IJCAI, Sydney, 1991.

[U1189a] Jeffrey D. Ullman. Bottom-up Beats Top-down for Datalog. In
Proc. of the Eight ACM SIGAGT-SIGMOD-SIGART Symposium on
Principles of Database Systems, Philadelphia, Pennsylvania, pages
140-149. ACM Press, March 1989.

[U1189b] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Sys
tems, Vol. 2. Computer Science Press, Rockville, 1989.

[vEK76] M.H. van Emden and R.A. Kowalski. The semantics of predicate
logic as a programming language. JACM, 23:733-742, 1976.

[vGRS88] Allen van Gelder, Kenneth A. Ross, and J. S. Schlipf. Unfounded
Sets and well-founded Semantics for general logic Programs. In Pro
ceedings 7th Symposion on Principles of Database Systems, pages
221-230, 1988.

[vGRS91] Allen van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-
founded semantics for general logic programs. Journal of the ACM,
38:620-650, 1991.

[Vor91] Martin Vorbeck. CNF-Prolog: A Meta-Interpreter for Chan’s Con
structive Negation, Theory. Technical report. Master Thesis, Karl
sruhe University (in german), 1991.

[Wit91a] Cees Witteveen. Partial Semantics for Truth Maintenance. In J. van
Eijck, editor. Logics in AI, LNAI 478, Berlin, 1991. Springer.

[Wit91b] Cees Witteveen. Skeptical Reason Maintenance is Tractable. In
J. Allen, R. Fikes, and B. Sandewall, editors. Proceedings of the sec
ond Conference on Principles of Knowledge Representation and Rea
soning, Cambridge, Massachusetts, pages 570-581. Morgan Kauf-
mann, 1991.

